VAQUITA 2008 David Starr Jordan CTD PROCESSING

VAQUITA 2008 CTD data files were collected using a Sea-Bird 911 plus profiling instrument aboard the NOAA Ship David Starr Jordan (DSJ). The 911 plus consists of the 9 plus underwater CTD and 11 plus V2 Deck Unit, which has high resolution sampling (24Hz) and pump-controlled conductivity and temperature flow-through sensors. Data were collected using Sea-Bird's SeaSave Win32 Version 7.18 and have been processed using Sea-Bird's SBE Data Processing SEASOFT Win32 Version 7.20c. More information regarding the SBE software and recommended data processing procedures can be found online at www.seabird.com.

Each CTD directory on the data server contains two folders named Raw and Data. CTD set-up information, pressure test results, and data collected at sea are stored in the Raw folder. All information and files used in processing are saved in the Data folder, including documentation, configuration files, calibration sheets, intermediate processing steps and final data.

No changes in sensor use occurred on the DSJ CTD during the VAQUITA 2008 cruise. The table below describes the period for which each sensor was used; no secondary sensors were used. The owners of the sensors were responsible for their maintenance.

	Casts	Temp	Cond	Pressure	C-Star Trans- missometer
Leg 2	001-056	T1448	C1165	P0311	CST-415DR

PRD-owned, borrowed from SIO

VAQUITA 2008 DSJ CTD SENSOR CALIBRATION

SWFSC MMTD uses Sea-Bird Electronics conductivity, temperature, oxygen, and pressure sensors. Sea-Bird Electronics conductivity sensors drift with usage and time, while temperature and pressure sensors drift primarily over time. Annual calibrations of the conductivity and temperature sensors are necessary to estimate and correct for this drift during data processing. Pre and post-cruise calibration certificates for the sensors used during VAQUITA 2008 are in the \CON Files\Calibrations folder.

Conductivity, temperature, and pressure are computed as polynomial functions of the sensor frequencies stored in the raw data file. We follow Sea-Bird recommended procedures for adjusting calibration coefficients for drift between calibrations (Sea-Bird App. Note # 31). Details can be found in the internal document "CTD Calibration Adjustments MMTD.pdf".

The Excel spreadsheet CTDcalibrations VAQUITA 2008 DSJ.xls, in the Documentation folder, contains the pre and post-cruise conductivity, temperature, pressure and transmissometer sensor calibration information and allows for the calculation of the interpolated slope or offset for each sensor. It then derives slope or offset values used to correct the calibration coefficients used in the Data Conversion and Derive modules of Sea-Bird's SBE Data Processing software. The adjusted configuration files used to process the VAQUITA 2008 DSJ data (Appendix 1) are in the \CON Files folder.

Conductivity Sensor Correction:

The SBE 4C series conductivity sensor has a measurement range of 0.0 to 7.0 Siemens/meter (S/m), which spans the conductivity range of SWFSC MMTD's study areas. The SBE 4C sensor is rated to have an initial accuracy of 0.0003 S/m; with a resolution (at 24Hz) of 0.00004 S/m.

The conductivity sensor, C1165, was calibrated on 27 March 2007 and 31 March 2010. The difference between the iSlope values at the start and end of the cruise was less than 0.0003, and the end iSlope was less than 1.00015; consequently, no calibration adjustment was necessary for the conductivity sensor (slope = 1).

Temperature Sensor Correction:

The SBE 3*plus* series temperature sensor has a measurement range of -5.0 to 35 °C, which spans the range of temperatures in SWFSC MMTD's study areas. The SBE 3*plus* sensor is rated to have an initial accuracy of \pm 0.001 °C and a resolution (at 24 samples per second) of 0.0003 °C.

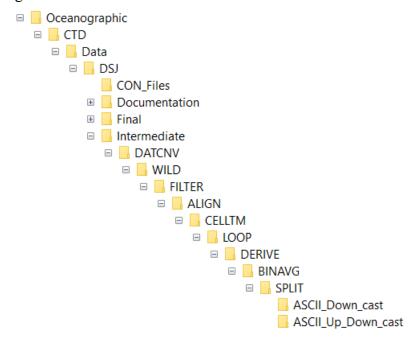
The temperature sensor, T1448, was calibrated on 29 March 2007 and 31 March 2010. The iOffset at the end of the cruise was less than 2mdeg C; consequently, no calibration adjustment was necessary for the temperature sensor (offset = 0).

Pressure Sensor Correction:

The SBE Paroscientific Digiquartz pressure sensor is rated to have an initial accuracy of 1.02m (i.e., 0.015% of the full scale range, which is 0-6800m). We do not exceed a maximum vertical depth of 1100m. Initial resolution (at 24Hz) is 0.068m (i.e., 0.001% of the full scale range).

Five deck tests, all on 17 November 2008, were conducted on the CTD fish-pressure sensor P0311, resulting in offsets of -4.741, -4.744, -4.742, -4.722, and -4.673; these results were consistent with Sea-Bird calibrations from 12 April 2007 (Offset= -4.2872) and 13 April 2010 (Offset=-6.0312). Therefore, the average deck test offset of -4.724 was used in the *.con file.

Transmissometer Sensor Correction:


The C-STAR Transmissometer sensor outputs a voltage that is linearly related to beam transmittance by a slope (M) and offset (B). We do not have a post-cruise calibration certificate, so the pre-cruise values of M and B were used without correction.

We use pre-cruise calibration coefficients for each sensor when available. Before running the processing modules, it is essential to ensure that the correct sensor configuration coefficients and corrections are loaded into the *.con files used by the SBE Data Processing program. Offset and slope adjustments are obtained from CTDcalibrations ORCAWALE 2008 MACII.xlsx in the \Documentation folder. Configuration files for the sensors used on the McArthur II during VAQUITA 2008 are listed in Appendix 1.

VAQUITA 2008 CTD SBE MODULE PROCESSING

The SBE Data processing modules that were applied to the raw VAQUITA 2008 data are listed below. Each SBE module creates a program setup file, named *.psa. The *.psa files are located in the folder preceding their output, i.e. the 'Derive.psa' file is found in the 'LOOP' folder. Output .cnv files are kept in binary format to speed processing and reduce file sizes. The final module – ASCII Out – converts the binary data to ASCII format; if examination of the data is needed during earlier processing steps, the Translate module can be used to convert to the binary data to ASCII.

Modules are run in the following order: Data Conversion, Wild Edit, Filter, Align CTD (as needed), Cell Thermal Mass, Loop Edit, Derive, Bin Average, Split, ASCII Out. The processed data in various stages are in the \Intermediate folder:

1.Data Conversion Module:

Data Conversion converts raw SBE 911plus data, which are typically stored as frequencies and voltages in the *.dat file, to engineering units and stores the converted data in a *.cnv file.

The options selected for processing in Data Conversion were as follows:

```
# name 0 = prDM: Pressure, Digiquartz [db]
# name 1 = c0S/m: Conductivity [S/m]
# name 2 = t090C: Temperature [ITS-90, deg C]
# name 3 = bat: Beam Attenuation, Chelsea/Seatech/Wetlab CStar [1/m]
# name 4 = xmiss: Beam Transmission, Chelsea/Seatech/Wetlab CStar [%]
# name 5 = flag: 0.000e+00
```

Fortran program ScrData (programmer: Paul Fiedler) was used to flag values outside of these broad ranges: pressure -5 to 1200 db, temperature -1 to 33 deg C, conductivity 2.5 to 7.0, and dissolved oxygen 0 to 350 µmol kg⁻¹. The program first checks the range of values (primary and secondary, if present) in the header file. If any span exceeds the above limits, the program writes a new file in which each bad value, and the values in the two scans preceding and the two scans succeeding the bad value, are flagged. The original file is renamed with an "x" prefix. For each edited file, the total number of scans, the number of values that were outside limits, and the number of values flagged is summarized in the file *ScrData.dat* in the \Intermediate\DATCNV\ folder. Of 56 CTD files, 1 had no outliers and 55 had C0 outliers.

2. Wild Edit Module:

Wild Edit flags outliers in temperature and conductivity data so that they are not used in further processing. Wild Edit's algorithm requires two passes through the data in blocks of *npoint* scans. The first pass computes the mean and standard deviation and temporarily flags values that differ from the mean by more than *pass1_nstd* standard deviations. The second pass recalculates the mean and standard deviation, excluding values flagged in the first pass. Scans that differ from the mean by more than *pass2_nstd* standard deviations are replaced with a bad data flag. The criteria established by *pass2_nstd* can be overridden using *pass2_mindelta*; specifically, if data are within *pass2_mindelta* of the mean, they are not flagged.

The options selected for processing in Wild Edit were as follows for all casts:

```
# wildedit_pass1_nstd = 2.0
# wildedit_pass2_nstd = 15.0
# wildedit_pass2_mindelta = 0.000e+000
# wildedit_npoint = 100
# wildedit_vars = c0S/m t090C bat xmiss
# wildedit_excl bad scans = yes
```

These options are Sea-Bird defaults, except that *pass2_nstd* was changed from 20.0 to 15.0 to identify more outliers.

3. Filter Module:

The Filter module is run to reduce high-frequency noise in the pressure data, which is caused by counting jitter or other unknown sources. It is important to remove this noise before running the Loop Edit module. Loop Edit flags data that exhibit a change in the CTD velocity. Velocity is calculated using only three successive scans; consequently, noisy pressure data can result in erroneously flagged scans. Filter runs a low-pass filter on the data, which smoothes high frequency (rapidly changing) data. To produce zero phase (i.e., no time shift), the filter is first run forward through the data and then run backward through the data. Pressure data is typically filtered with a time constant equal to four times the CTD scan rate. SWFSC PRD runs a low-pass filter on the pressure data with time constant = 0.15 seconds, as recommended by Sea-Bird Electronics Inc.

The options selected for processing in Filter were as follows for all CTD casts:

```
# filter_low_pass_tc_A = 0.030
# filter_low_pass_tc_B = 0.150
# filter_low_pass_A_vars = bat xmiss
# filter_low_pass_B_vars = prDM
```

4. Align CTD Module:

It is essential that all variables derived from the data, such as salinity, density, and sound speed, use measurements of temperature and conductivity from same parcel of water. It is practically impossible to instantaneously measure the same parcel of water with all sensors due to the physical location of the sensors on the unit and the different time delays of the sensors. The typical time delay of conductivity relative to temperature, 0.073 seconds, is automatically corrected by the SBE 11plus Deck Unit during data collection. If spikes are observed in the processed salinity profiles, further alignment of conductivity may be necessary. The Align CTD module can be used to align the conductivity data relative to pressure.

Fortran program TRIALIGN (programmer: Paul Fiedler) was run to find the optimum alignment value for conductivity (i.e., the number of scans by which to shift conductivity relative to temperature). TRIALIGN finds the maximum temperature gradient within a 240-scan window using linear regression; TRIALIGN tests for the gradient using only the first 10,000 scans to ensure data are from the downcast and imposes the criteria that depth must change by at least 5m in the 240-scan window. Conductivity alignments are tested within the region of maximum temperature gradient because misalignment of temperature and conductivity often results in excessive salinity spikes when temperature is changing rapidly. Within the window, conductivity is shifted by -24 to +24 scans. For each shift, salinity is derived from the temperature and conductivity data in each scan and a linear regression is fit to the salinity values. The shift that results in the minimum standard deviation of the regression residuals is selected as the optimal value for that cast. Optimal values for all casts are averaged to obtain a single alignment value for the cruise (one scan is 0.042 seconds).

Inspection of the VAQUITA 2008 CTD profiles suggested that alignment was not needed, as expected, because he descent rate was kept very low (bottom depths were 15 to 37m). In fact, this depth range is too small for TRIALIGN as currently written. Therefore, Align CTD was not used.

5. Cell Thermal Mass Module:

Cell Thermal Mass uses a recursive filter to remove conductivity cell thermal mass effects from the measured conductivity. In areas with large temperature gradients, the thermal mass correction is on the order of 0.005 psu. In areas with small temperature gradients, the correction is negligible.

The following Sea-Bird Electronics Inc. recommendations for Cell Thermal Mass when processing SBE 9plus data, with TC duct, were used:

```
# celltm_alpha = 0.0300, 0.0000
# celltm_tau = 7.0000, 0.0000
# celltm_temp_sensor_use_for_cond = primary,
```

6. Loop Edit Module:

Loop Edit flags data that exhibit a change in the mean CTD ascent or descent rate (e.g., pressure reversals or slowdowns). Such changes in ascent or descent rates are usually created by ship heave as the CTD unit is lowered or raised, and indicate unreliable data. Data that have been flagged are documented in the *.cnv header.

The options selected for processing in Loop Edit follow the recommendations of Sea-Bird Electronics Inc. for casts in which data collection begins after the surface soak:

```
# loopedit_minVelocity = 0.100
# loopedit_surfaceSoak: do not remove
# loopedit_excl_bad_scans = yes
```

Minimum velocity was reduced from 0.250 due to the slow descent rate explained above.

Examination of pressure vs. scan count in Sea Plot showed that data collection for all casts was started before the CTD had been returned to near the surface after the surface soak, which could not always be as deep as 10m because of bottom depth. Therefore, a number of scans ranging between 900 and 8500 (datcnv_skipover in file header) were skipped for each profile in the Data Conversion module to ensure that the downcast profile progressed cleanly from near-surface to depth.

7. Derive Module:

Derive uses pressure, temperature, and conductivity from the input *.cnv file to compute the following oceanographic variables, which are routinely used in the assessment of protected species (other variables are available upon request):

- Salinity
- Density (density, sigma-theta, sigma-t, sigma-1, sigma-2, sigma-4)
- Depth (salt water, fresh water)
- Sound velocity (which can be calculated using the Chen-Millero, DelGrosso or Wilson equation)
- Average sound velocity (the harmonic mean from the surface to the current CTD depth, which is calculated on the downcast only)

The following processing options were selected in this module for all CTD casts:

```
# name 5 = sal00: Salinity, Practical [PSU]
# name 6 = sigma-t00: Density [sigma-t, Kg/m^3]
# name 7 = depSM: Depth [salt water, m], lat = 24
# name 8 = svCM: Sound Velocity [Chen-Millero, m/s]
# name 9 = avgsvCM: Average Sound Velocity [Chen-Millero, m/s], minP = 2, minS = 20
```

To calculate average sound velocity, the following values were used:

```
# minimum pressure = 2 db
# minimum salinity = 20 psu
# Latitude = 31 °N

[average depth of the acoustic array]
[recommended by Sea-Bird Electronics Inc.]
[this value is used only if NMEA latitude is not available in the header]
```

The profiles output by the Derive module were inspected by the Senior Oceanographer for bad data caused by sensor failure, temperature inversions, low surface salinity measurements (likely the result of rain), and spikes in salinity. Comments about each cast are in VAQUITA 2008 DSJ CTD cast info.xls in the \Documentation folder. Comment codes are:

```
A – acceptable \simA – acceptable for assessments of protected species but not for a national archive R – reject cast
```

8. Bin Average Module:

The Bin Average module averages temperature, conductivity, pressure, and derived variables in user-selected intervals; the intervals may be defined using pressure, depth, scan number, or time range. SWFSC PRD normally uses 1m bins, with no surface bin. However, because VAQUITA 2008 profiles were so shallow, 0.5m bins were used here. In this module, we exclude scans that we flagged as bad during the loop edit module.

The following processing options were selected in this module for all casts:

```
# binavg_bintype = Depth
# binavg_binsize = 0.5
# binavg_excl_bad_scans = yes
# binavg_skipover = 0
# include surface bin = yes
# binavg_surface bin = no, min = 0.000, max = 5.000, value = 0.000
```

9. Split Module:

Split separates the data from an input *.cnv file into upcast (pressure decreasing) and downcast (pressure increasing) *.cnv files. Downcast only files are output because they do not contain the data collected when the bottles are fired (e.g., repetitive sampling at the same pressure). Consequently, they are used to derive variables such as thermocline depth and strength.

```
The following options were selected in this module for all casts: # split_excl_bad_scans = no # output the downcast only (into the \Split folder). This command adds a 'd' at the beginning of the filenames.
```

10. ASCII Out Module:

ASCII Out outputs the header and/or the data from a binary data file (*.cnv). Data are written to an ASCII file (*.asc), while the header information, which lists each processing module and the variables applied, is written to a separate ASCII file (*.hdr).

This module was run twice. First, to convert the complete cast; second, to convert the downcast-only files created with the SPLIT module.

The following options were selected in this module for all casts:

- # Output Header and Data files
- # Label Column at top of the file
- # Column separator = space

FINAL PRODUCT

ASCII Out outputs the header and/or the data from a binary data file (*.cnv). Data are written to an ASCII file (*.asc), while the header information, which lists each processing module and the variables applied, is written to a separate ASCII file (*.hdr).

ASCII down-cast output files, containing only data recorded by the secondary sensors and no error flags, can be found in the \Final\ASCII Down cast folder.

The file headers have been saved separately from the final ASCII data files in both directories. The header files contain time in two separate fields: "System UpLoad Time" and "NMEA UTC (Time)". The time in the "System UpLoad Time" field is taken from the PC used to the collect the data and may not be accurate (e.g., this field may be recorded in local time, rather than Coordinated Universal Time, and may not have been adjusted for local time zone changes). The Coordinated Universal Time in the "NMEA UTC (Time)" field is taken from the GPS unit and is accurate as long as the GPS functioned properly.

The downcast profile is used to derive variables commonly used in protected species assessments, such as thermocline depth and strength. Plots of complete casts show hysteresis, or depth offsets, of 1-5 m, which is less than normally seen because of the low winch rates. The errors in the depth, as indicated by the offsets, are expected to occur primarily in the upcasts due to "package wake" (i.e., the "shadowing" of the sensors by the rosette and frame as the CTD is pulled up through the water column). Additionally, the upcasts include repetitive sampling of the same depth when bottles are fired to collect water samples.

In total, 56 CTD casts were conducted during VAQUITA 2008 on the David Starr Jordan. The format of the output files is shown below.

PrDM	COS/m	T090C	Bat	Xmiss	Sal00	Sigma-t00	DepSM	SvCM	AvgsvCM
1.510	5.127357	21.7026	2.0268	60.2467	36.2834	25.2769	1.500	1527.52	-270.21
2.013	5.120677	21.6420	1.9689	61.1273	36.2811	25.2921	2.000	1527.37	769.29
2.516	5.118408	21.6038	2.0373	60.0909	36.2950	25.3133	2.500	1527.29	1506.40

Column descriptions are as follows:

PrDM = Digiquartz pressure in decibars (db)

C0S/m = Conductivity in Siemens per meter (S/m)

T090C = Temperature, in degrees Celsius (°C), calculated using the ITS-90 standard

Bat = Beam attenuation (1/m)

Xmiss = Beam transmittance (%)

Sal00 = Salinity, in practical salinity units (psu), derived from the temperature and conductivity sensors

Sigma-t00 = Density [sigma-theta], in kilograms per cubic meter (kg/m³), calculated from the temperature sensor and the derived salinity data

DepSM = Salt water depth in meters (m)

SvCM = Chen-Millero's sound velocity in meters per second (m/s)

AvgsvCM = Chen-Millero's average sound velocity in meters per second (m/s)

Perl program CTDPositionCheck (programmer: Dan Prosperi) was used to check the CTD cast date/times and positions recorded in the header files against the edited TSG file for the survey. All 56 files had matching TSG records; corrections were made in 14 files as described in \Final\ASCII Down cast\Files With Errors\ ReadMe.txt.

Paul Fiedler, 16 June 2021

Appendix 1. VAQUITA 2008 DSJ Sea-Bird Data Processing Configuration File

VAQUITA 2008 MACII.con

```
Configuration report for SBE 911plus/917plus CTD
Frequency channels suppressed: 2
Voltage words suppressed : 3
Computer interface
                                   : RS-232C
NMEA position data added : No
NMEA depth data added : No
NMEA time added : No
                                    : No
                                   : No
NMEA time added
Surface PAR voltage added
: No
1) Frequency 0, Temperature
    Serial number : 1448
   Calibrated on : 29-Mar-07
        : 4.82389793e-003
: 6.72227663e-004
                   : 2.59664400e-005
                   : 2.07737077e-006
: 1000.000
   J
   : 1000.000
Slope : 1.00000000
Offset : 0.0000
2) Frequency 1, Conductivity
    Serial number : 1165
   Calibrated on : 27-Mar-07
   G : -3.96549156e+000
                   : 5.47431998e-001
                   : 2.17969334e-004
: 1.73926127e-005
   I
J
   CTcor : 3.2500e-006

CPcor : -9.57000000e-008

Slope : 1.0000000

Offset : 0.00000
3) Frequency 2, Pressure, Digiquartz with TC
    Serial number : 0311
   Calibrated on: 12-Apr-07
        : -4.123560e+004
: 1.043267e+000
   C3
                   : 1.330030e+000
   D1
D2
                   : 4.018400e-002
: 0.000000e+000
                   : 3.020637e+001
   Т2
                   : 4.924132e-005
: 3.833950e-006
: 6.451910e-009
   Т3
   Т4
   T5 : 0.000000e+000
Slope : 1.00000000
Offset : -4.97000
AD590M : 1.167000e-002
AD590B : -8 165600
                   : -8.165620e+000
4) A/D voltage 0, Transmissometer, Chelsea/Seatech/Wetlab CStar
    Serial number : CST-415DR
   Calibrated on : 30-07-07
   M : 21.5567
                    : -1.1835
```

5) A/D voltage 1, Free

Path length : 0.250