The salinity data are calibrated using a piece-wise linear fit obtained by comparison of float data with WOCE standard CTD casts (see Bacon, Centurioni and Gould, 2001, J. Atm. Oc. Tech., 18,1258).
The correct salinity is obtained with the formula:
Snew = Sold + a + bt,
where t is the time expressed in number of days.
Example (with float 10587):
The following table contains the coefficients a and b and their accuracy, the cycle number that corresponds to the calibration point (that is the float profile for which the comparison with a ship-CTD was made) and the corresponding number of days from the deployment of the float.
Day | Cyc. # | a | delta-a | b | delta-b |
13 | 1 | 0.0116 | 0.0041 | -0.000171 | 0.000656 |
27 | 2 | 0.0092 | 0.0051 | 0.000050 | 0.000156 |
180 | 13 | 0.0168 | 0.0188 | 0.000050 | 0.000294 |
263 | 19 | 0.0210 | 0.0056 | -0.00033 | 0.001037 |
276 | 20 | 0.0167 | 0.0079 | 0.000052 | 0.000447 |
303 | 22 | 0.0181 | 0.0042 | 0 | 0 |
0 | 23 | 0 | 0 | 0 | 0 |
To calibrate profile #1: Snew = Sold + 0.0116 + (-0.000171 * 0)
To calibrate profile #2: Snew = Sold + 0.0092 + (-0.000050 * 0)
To calibrate profile #3: Snew = Sold + 0.0092 + (-0.000050 * 14)
To calibrate profile #4: Snew = Sold + 0.0092 + (-0.000050 * 28)
To calibrate profile #13: Snew = Sold + 0.0168 + (-0.000050 * 0)
etc
Note that since we calculated a piece-wise linear fit, time is counted in days from the most recent calibration event. That is, if t1 = 13, t2 = 27, t3 = 180, t4 = 263 etc are the days corresponding to the calibration events, to calibrate profile #5 the correct formula is:
Snew = Sold + 0.0092 + [-0.000050 * (t2 - t)]
This may appear a bit convoluted and impractical but offsetting the time in this way allows you to appreciate quickly the error in salinity (roughly corresponding to a since the drift, b, is always very small).
Profiles with cycle number > 22 are uncalibrated. The quality of the data is finally checked by plotting a global T/S diagram (with all the calibrated data from the 4 floats). The points with T~< 3 ° C show that the curve is sufficiently tight to assume that the spread of the points in the plot is due to the natural variability of the water mass we are observing (Labrador Sea Water).
Float number 10588
Day | Cyc. # | a | delta-a | b | delta-b |
12 | 1 | -0.0276 | 0.0042 | 0.000024 | 0.000042 |
221 | 16 | -0.0225 | 0.0045 | -0.000089 | 0.000105 |
303 | 22 | -0.0298 | 0.0041 | 0.000013 | 0.000161 |
372 | 27 | -0.0289 | 0.0070 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
Float number 10589
Day | Cyc. # | a | delta-a | b | delta-b |
13 | 1 | -0.0306 | 0.0044 | -0.000053 | 0.000034 |
303 | 22 | -0.0461 | 0.0053 | 0.000279 | 0.000198 |
359 | 26 | -0.0305 | 0.0058 | -0.000862 | 0.000784 |
372 | 27 | -0.0417 | 0.0044 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
Float number 10591
Day | Cyc. # | a | delta-a | b | delta-b |
12 | 1 | 0.0095 | 0.0044 | 0.000736 | 0.000401 |
40 | 3 | -0.0111 | 0.0069 | -0.000006 | 0.000057 |
234 | 17 | -0.0099 | 0.0041 | -0.000067 | 0.000208 |
275 | 20 | -0.0126 | 0.0044 | -0.000226 | 0.000337 |
302 | 22 | -0.0187 | 0.0047 | 0 | 0 |
0 | 23 | 0 | 0 | 0 | 0 |
The pressure data have also been adjusted from the original values. The formula is: Pnew = Pold - offset
Absent values for the offset are indicated as -9999
The following tables provide the offsets for each profile for 7 floats.
10587 | 10588 | 10589 | 10590 | ||||
Offset | Profile Number | Offset | Profile Number | Offset | Profile Number | Offset | Profile Number |
-6 | 1 | -4 | 1 | -9.1 | 1 | 1 | 1 |
-10.9 | 2 | -16 | 2 | -15.1 | 2 | -6.9 | 2 |
-11.9 | 3 | -15 | 3 | -16.1 | 3 | -3.9 | 3 |
-11.9 | 4 | -17 | 4 | -15.1 | 4 | -3 | 4 |
-11.9 | 5 | -16 | 5 | -16.1 | 5 | -1 | 5 |
-11.9 | 6 | -16 | 6 | -16.1 | 6 | -2 | 6 |
-11.9 | 7 | -16 | 7 | -16.1 | 7 | 0 | 7 |
-11.9 | 8 | -16 | 8 | -16.1 | 8 | -2 | 8 |
-11.9 | 9 | -17 | 9 | -16.1 | 9 | 0 | 9 |
-11.9 | 10 | -17 | 10 | -16.1 | 10 | -2 | 10 |
-11.9 | 11 | -16 | 11 | -16.1 | 11 | 0 | 11 |
-12.9 | 12 | -16 | 12 | -16.1 | 12 | -1 | 12 |
-11.9 | 13 | -16 | 13 | -16.1 | 13 | -1 | 13 |
-11.9 | 14 | -16 | 14 | -16.1 | 14 | -1 | 14 |
-10.9 | 15 | -15 | 15 | -16.1 | 15 | 0 | 15 |
-10.9 | 16 | -15 | 16 | -15.1 | 16 | 0 | 16 |
-10.9 | 17 | -16 | 17 | -14.1 | 17 | 0 | 17 |
-10.9 | 18 | -15 | 18 | -13.1 | 18 | 0 | 18 |
-9.9 | 19 | -14 | 19 | -13.1 | 19 | 0 | 19 |
-9.9 | 20 | -14 | 20 | -13.1 | 20 | 1 | 20 |
-9.9 | 21 | -14 | 21 | -12.1 | 21 | 1 | 21 |
-9.9 | 22 | -14 | 22 | -12.1 | 22 | 1 | 22 |
-9.9 | 23 | -14 | 23 | -13.1 | 23 | 1 | 23 |
-9.9 | 24 | -15 | 24 | -13.1 | 24 | 1 | 24 |
-9.9 | 25 | -16 | 25 | -14.1 | 25 | 1 | 25 |
-9.9 | 26 | -16 | 26 | -15.1 | 26 | 1 | 26 |
-10.9 | 27 | -16 | 27 | -15.1 | 27 | 1 | 27 |
-12.9 | 28 | -16 | 28 | -15.1 | 28 | 0 | 28 |
-13.9 | 29 | -17 | 29 | -15.1 | 29 | 0 | 29 |
-12.9 | 30 | -17 | 30 | -16.1 | 30 | 0 | 30 |
-11.9 | 32 | -17 | 31 | -16.1 | 31 | 0 | 31 |
-11.9 | 33 | -17 | 32 | -16.1 | 32 | -1 | 32 |
-11.9 | 34 | -17 | 33 | -1 | 33 | ||
-10.9 | 36 | -16 | 34 | -1 | 34 | ||
-10.9 | 37 | -17 | 35 | -1 | 35 | ||
-10.9 | 38 | -17 | 36 | -1 | 36 | ||
-9.9 | 39 | -17 | 37 | -1 | 37 | ||
-8.9 | 40 | -17 | 38 | -1 | 38 | ||
-9.9 | 41 | -17 | 39 | 0 | 39 | ||
-8.9 | 42 | -17 | 40 | 0 | 40 | ||
-7.9 | 43 | -19 | 41 | 0 | 41 | ||
-7.9 | 44 | -18 | 42 | 1 | 42 | ||
-6.9 | 45 | -19 | 43 | 1 | 43 | ||
-6.9 | 46 | -17 | 44 | 1.9 | 44 | ||
-6.9 | 47 | -16 | 45 | 1 | 45 | ||
-7.9 | 48 | -15 | 46 | 1.9 | 46 | ||
-7.9 | 49 | -14 | 47 | 1.9 | 47 | ||
-7.9 | 50 | -15 | 48 | 1 | 48 | ||
-7.9 | 51 | -14 | 49 | 1 | 49 | ||
-8.9 | 52 | -14 | 50 | 1 | 50 | ||
-7.9 | 53 | -14 | 51 | 1 | 51 | ||
-8.9 | 54 | -15 | 52 | 1 | 52 | ||
-8.9 | 55 | -16 | 53 | 0 | 53 | ||
-8.9 | 56 | -17 | 54 | 0 | 54 | ||
-8.9 | 57 | -17 | 55 | 0 | 55 | ||
-8.9 | 58 | -18 | 56 | 0 | 56 | ||
-7.9 | 59 | -18 | 57 | 0 | 57 | ||
-7.9 | 60 | -18 | 58 | 0 | 58 | ||
-8.9 | 61 | -17 | 60 | 0 | 59 | ||
-7.9 | 62 | -18 | 61 | 0 | 60 | ||
-6.9 | 63 | -16 | 62 | 1 | 61 | ||
-6.9 | 64 | -16 | 63 | 0 | 62 | ||
-6.9 | 65 | -16 | 64 | 1 | 63 | ||
-6 | 66 | -16 | 65 | 0 | 64 | ||
-6 | 67 | -16 | 66 | 1 | 65 | ||
-3 | 68 | -15 | 67 | 1 | 66 | ||
-3 | 69 | -14 | 68 | 1 | 67 | ||
-2 | 70 | -11 | 69 | 1 | 68 | ||
-2 | 71 | -9 | 70 | 0 | 69 | ||
-1 | 72 | -11 | 71 | 1 | 70 | ||
-2 | 73 | -9 | 72 | 1 | 71 | ||
-2 | 74 | -9 | 73 | 1 | 72 | ||
-3 | 75 | -9 | 74 | 1.9 | 73 | ||
-3 | 76 | -5 | 75 | 1 | 74 | ||
-5 | 77 | -6 | 76 | 1 | 75 | ||
-6 | 78 | -6 | 77 | 0 | 76 | ||
-6 | 79 | -7 | 78 | 1 | 77 | ||
-6.9 | 80 | -8 | 79 | 0 | 78 | ||
-6.9 | 81 | -9 | 80 | 0 | 79 | ||
-6.9 | 82 | -8 | 81 | 0 | 80 | ||
-7.9 | 83 | -9 | 82 | -1 | 81 | ||
-6.9 | 84 | -9 | 83 | 0 | 82 | ||
-7.9 | 85 | -9 | 84 | -2 | 83 | ||
-6.9 | 86 | -9 | 85 | -2 | 84 | ||
-6.9 | 87 | -9 | 86 | -1 | 85 | ||
-7.9 | 88 | -9 | 87 | -2 | 86 | ||
-6.9 | 89 | -10 | 88 | -2 | 87 | ||
-6.9 | 90 | -9 | 89 | -2 | 88 | ||
-4 | 91 | -10 | 90 | -1 | 89 | ||
-6 | 92 | -8 | 91 | -2 | 90 | ||
-6 | 93 | -8 | 92 | -2 | 91 | ||
-2 | 94 | -11 | 93 | -2 | 92 | ||
-1 | 95 | -9 | 94 | -1 | 93 | ||
-1 | 96 | -10 | 95 | -1 | 94 | ||
-1 | 97 | -9 | 96 | -1 | 95 | ||
-1 | 98 | -9999 | 97 | 0 | 96 | ||
-1 | 99 | -6 | 98 | -1 | 97 | ||
-1 | 100 | -7 | 99 | -1 | 98 | ||
-1 | 101 | -8 | 100 | -1 | 99 | ||
0 | 102 | -7 | 101 | -1 | 100 | ||
-1 | 103 | -8 | 102 | -3 | 101 | ||
-1 | 104 | -9 | 103 | -3.9 | 102 | ||
-1 | 105 | -9 | 104 | -4.9 | 103 | ||
-1 | 106 | -9 | 105 | -6.9 | 104 | ||
-1 | 107 | -9 | 106 | -7.8 | 105 | ||
0 | 108 | -9 | 107 | -7.8 | 106 | ||
-1 | 109 | -9 | 108 | -8.8 | 107 | ||
-1 | 110 | -9 | 109 | -8.8 | 108 | ||
0 | 111 | -10 | 110 | -9.8 | 109 | ||
0 | 112 | -10 | 111 | -10.8 | 110 | ||
-1 | 113 | -10 | 112 | ||||
-10 | 113 | ||||||
-9 | 114 | ||||||
-10 | 115 | ||||||
-9 | 116 | ||||||
-8 | 117 | ||||||
-8 | 118 | ||||||
-7 | 119 | ||||||
-6 | 120 |
10591 | 10592 | 10593 | |||
Offset | Profile Number | Offset | Profile Number | Offset | Profile Number |
-4.9 | 1 | -5.9 | 1 | -3.1 | 1 |
-5.9 | 2 | -9.9 | 2 | -8.3 | 2 |
-8.9 | 3 | -12.9 | 3 | -8.3 | 3 |
-12.9 | 4 | -7.3 | 4 | ||
-13.9 | 5 | -7.3 | 5 | ||
-12.9 | 6 | -9.3 | 6 | ||
-13.9 | 7 | -9.3 | 7 | ||
-13.9 | 8 | -8.3 | 8 | ||
-13.9 | 9 | -8.3 | 9 | ||
-12.9 | 10 | -8.3 | 10 | ||
-12.9 | 11 | -7.3 | 11 | ||
-11.9 | 12 | -7.3 | 12 | ||
-11.9 | 13 | -7.3 | 13 | ||
-11.9 | 14 | -7.3 | 14 | ||
-10.9 | 15 | -6.2 | 15 | ||
-10.9 | 16 | -6.2 | 16 | ||
-10.9 | 17 | -5.2 | 17 | ||
-8.9 | 18 | -4.1 | 18 | ||
-8.9 | 19 | -3.1 | 19 | ||
-7.9 | 20 | -2 | 20 | ||
-8.9 | 21 | -2 | 21 | ||
-7.9 | 22 | -2 | 22 | ||
-7.9 | 23 | -2 | 23 | ||
-7.9 | 24 | -2 | 24 | ||
-8.9 | 25 | -2 | 25 | ||
-8.9 | 26 | -2 | 26 | ||
-8.9 | 27 | -2 | 27 | ||
-8.9 | 28 | -2 | 28 | ||
-8.9 | 29 | -3.1 | 29 | ||
-8.9 | 30 | -3.1 | 30 | ||
-3.1 | 31 | ||||
-4.1 | 32 | ||||
-4.1 | 33 | ||||
-4.1 | 34 | ||||
-4.1 | 35 | ||||
-4.1 | 36 | ||||
-3.1 | 37 | ||||
-3.1 | 38 | ||||
-3.1 | 39 | ||||
-3.1 | 40 | ||||
-2 | 41 | ||||
-1 | 42 | ||||
0 | 43 | ||||
0 | 44 | ||||
2.1 | 45 | ||||
2.1 | 46 | ||||
3.2 | 47 | ||||
2.1 | 48 | ||||
2.1 | 49 | ||||
2.1 | 50 | ||||
3.2 | 51 | ||||
3.2 | 52 | ||||
2.1 | 53 | ||||
2.1 | 54 | ||||
1.1 | 55 | ||||
1.1 | 56 | ||||
0 | 57 | ||||
1.1 | 58 | ||||
0 | 59 | ||||
1.1 | 60 | ||||
1.1 | 61 | ||||
1.1 | 62 | ||||
1.1 | 63 | ||||
1.1 | 64 | ||||
2.1 | 65 | ||||
2.1 | 66 | ||||
3.2 | 67 | ||||
3.2 | 68 | ||||
3.2 | 69 | ||||
3.2 | 70 | ||||
4.2 | 71 | ||||
4.2 | 72 | ||||
6.3 | 73 | ||||
6.3 | 74 | ||||
6.3 | 75 | ||||
5.3 | 76 | ||||
5.3 | 77 | ||||
5.3 | 78 | ||||
5.3 | 79 | ||||
5.3 | 80 | ||||
5.3 | 81 | ||||
4.2 | 82 | ||||
4.2 | 83 | ||||
4.2 | 84 | ||||
6.3 | 85 | ||||
5.3 | 86 | ||||
5.3 | 87 | ||||
5.3 | 88 | ||||
6.3 | 89 | ||||
6.3 | 90 | ||||
6.3 | 91 | ||||
6.3 | 92 | ||||
7.3 | 93 | ||||
7.3 | 94 | ||||
8.4 | 95 | ||||
8.4 | 96 | ||||
10.5 | 97 | ||||
9.4 | 98 | ||||
10.5 | 99 | ||||
10.5 | 100 | ||||
10.5 | 101 | ||||
9.4 | 102 | ||||
10.5 | 103 | ||||
9.4 | 104 | ||||
9.4 | 105 | ||||
8.4 | 106 | ||||
8.4 | 107 | ||||
8.4 | 108 | ||||
8.4 | 109 | ||||
8.4 | 110 | ||||
8.4 | 111 | ||||
8.4 | 112 | ||||
8.4 | 113 | ||||
8.4 | 114 | ||||
8.4 | 115 | ||||
8.4 | 116 | ||||
9.4 | 117 | ||||
9.4 | 118 | ||||
9.4 | 119 | ||||
10.5 | 120 | ||||
-9999 | 121 | ||||
11.5 | 122 | ||||
12.6 | 123 | ||||
12.6 | 124 | ||||
12.6 | 125 | ||||
12.6 | 126 | ||||
12.6 | 127 |