BERING STRAIT NORSEMAN II 2014 MOORING CRUISE REPORT

Research Vessel Norseman II, Norseman Maritime Charters Nome-Nome, 30th June – 7th July 2014 Rebecca Woodgate, University of Washington (UW), woodgate @apl.washington.edu and the Bering Strait 2014 Science Team Funding from NSF Arctic Observing Network Program PLR-1304052

with project support also from ONR N00014-13-1-0468

(Photo from www.norsemanmartime.com)

Chief Scientist:	Rebecca Woodgate, University of Washington (UW), USA. 1013 NE 40 th Street, Seattle WA, 98105 Email: woodgate@apl.washington.edu Tel: +1-206-221-3268; Fax: +1-206-543-6785
Co-PIs:	Patrick Heimbach, Massachusetts Inst. of Technology (MIT), USA An Nguyen, MIT, USA
Related PIs:	Kate Stafford, UW, USA Terry Whitledge, University of Alaska, Fairbanks (UAF), USA

As part of Bering Strait projects funded by NSF-AON (Arctic Observing Network) and ONR, in June/July 2014 a team of US scientists undertook a ~ 7 day cruise in the Bering Strait and southern Chukchi Sea region on the US vessel Norseman II, operated by Norseman Maritime Charters.

The primary goals of the expedition were:

1) recovery of 3 moorings carrying physical oceanographic (Woodgate-ONR), bio-optical (Whitledge) and marine mammal acoustic (Stafford) instrumentation. These moorings were deployed in the Bering Strait region in 2013 from the Norseman II. The funding for the physical oceanographic components of these moorings comes from ONR.

2) deployment of 3 moorings in the Bering Strait region, carrying physical oceanographic (Woodgate), bio-optical (Whitledge) and marine mammal acoustic (Stafford) instrumentation. The funding for the physical oceanographic components of these moorings comes from NSF-AON.

3) accompanying CTD sections (without water sampling).

4) collection of accompanying ship's underway data (surface water properties, ADCP, meteorological data).

The cruise loaded and offloaded in Nome, Alaska.

SCIENCE BACKGROUND

The ~50m deep, ~ 85km wide Bering Strait is the only oceanic gateway between the Pacific and the Arctic oceans.

The oceanic fluxes of volume, heat, freshwater, nutrients and plankton through the Bering Strait are critical to the water properties of the Chukchi [*Woodgate et al.*, 2005a]; act as a trigger of sea-ice melt in the western Arctic [*Woodgate et al.*, 2010]; provide a subsurface source of heat to the Arctic in winter, possibly thinning sea-ice over about half of the Arctic Ocean [*Shimada et al.*, 2006; *Woodgate et al.*, 2010]; are ~ 1/3rd of the freshwater input to the Arctic [*Aagaard and Carmack*, 1989; *Woodgate and Aagaard*, 2005]; and are a major source of nutrients for ecosystems in the Arctic Ocean and the Canadian Archipelago [*Walsh et al.*, 1989]. In modeling studies, changes in the Bering Strait throughflow also influence the Atlantic Meridional Circulation [*Wadley and Bigg*, 2002] and thus world climate [*De Boer and Nof*, 2004].

Quantification of these fluxes (which all vary significantly seasonally and interannually) is critical to understanding the physics, chemistry and ecosystems of the Chukchi Sea and western Arctic, including sea-ice retreat timing and patterns, and possibly sea-ice thickness. Understanding the processes setting these fluxes is vital to prediction of future change in this region and likely in the Arctic and beyond.

Figure 1: (Left) Chukchi Sea ice concentration (AMSR-E) with schematic topography. White arrows mark three main water pathways melting back the ice edge [Woodgate et al., 2010].

(Middle) Detail of the Bering Strait, with schematic flows and mooring locations (black dots – A2, A3, A4). The main northward flow passes through both channels (magenta arrows). Topography diverts the western channel flow eastward near site A3. The warm, fresh Alaskan Coastal Current (ACC) (red arrow) is present seasonally in the east. The cold, fresh Siberian Coastal Current (SCC) (blue dashed arrow) is present in some years seasonally in the west. Green dashed line at 168°58.7'W marks the US-Russian EEZ (Exclusive Economic Zone) boundary. Note all moorings are in the US EEZ. Depth contours are from IBCAO [Jakobsson et al., 2000]. The Diomede Islands are in the center of the strait, seen here as small black dots on the green dashed line marking the US-Russian boundary.

(**Right**) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard Space Flight Center). White areas indicate clouds. Note the dominance of the warm ACC along the Alaskan Coast, and the suggestion of a cold SCC-like current along the Russian coast [Woodgate et al., 2006].

Since 1990, year-round moorings have been maintained almost continually in the Bering Strait region, supported by typically annual servicing and hydrographic cruises. These data have allowed us to quantify seasonal and interannual change [*Woodgate et al.*, 2005b; *Woodgate et al.*, 2006; *Woodgate et al.*, 2010; *Woodgate et al.*, 2012], and assess the strong contribution of the Alaskan Coastal Current (ACC) to the fluxes through the strait [*Woodgate and Aagaard*, 2005]. These data also show that the Bering Strait throughflow increased ~50% from 2001 (~0.7Sv) to 2011 (~1.1Sv), driving heat and freshwater flux increases [*Woodgate et al.*, 2012]. While ~ 1/3rd of this change is attributable to weaker local winds, 2/3rds appears to be driven by basin-scale changes between the Pacific and the Arctic. Remote data (winds, SST) prove insufficient for quantifying variability, indicating interannual

change can still only be assessed by in situ year-round measurements [*Woodgate et al.*, 2012]. Indeed, data from 2013 indicate a surprisingly low flow year.

The work to be accomplished/started on this cruise will extend this mooring time-series to summer 2015.

Figure 2, from [Woodgate et al., 2012]

a) map as per Figure 1.

b) transport calculated from A3 (blue) or A2 (cyan), with error bars (dashed) calculated from variability; including adjustments estimated from 2007-2009 Acoustic Doppler Current Profiler data for 6-12m changes in instrument depth (black);

c) near-bottom temperatures from A3 (blue) and A4 (magenta-dashed), and the NOAA SST product (red diamonds);

d) salinities from A3 (blue) and A4 (magenta);

e) heat fluxes: blue - from A3 only; red – including ACC correction $(1 \times 10^{20} \text{ J})$ and contributions from surface layer of 10m (lower bound) or 20m (upper bound) at SST, with black x indicate heat added from 20m surface layer;

f) freshwater fluxes: blue – from A3 only; red – including 800-1000km³ (lower and upper bounds) correction for stratification and ACC;

g) transport attributable to NCEP wind (heading 330°, i.e., northwestward) at each of 4 points (coloured X in **(a)**) and the average thereof (black); and

h) transport attributable to the pressure-head term from the annual (black) or weekly (green) fits.

Uncertainties are order 10-20%. Red lines on (g) and (h) indicate best fit for 2001-2011 (trends= $m\pm$ error, in Sv/yr, error being the 95% confidence limit from a 1-sided Student's t-test).

International links: Maintaining the time-series measurements in Bering is important to several national and international programs, e.g., the Arctic Observing Network (AON), started as part of the International Polar Year (IPY) effort; NSF's Freshwater Initiative (FWI) and Arctic Model Intercomparison Project (AOMIP), and the international Arctic SubArctic Ocean Fluxes (ASOF) program. For several years, the work was part of the RUSALCA (Russian-US Long Term Census of the Arctic). Some of the CTD lines are part of the international Distributed Biological Observatory (DBO) effort. The mooring work also supports regional studies in the area, by providing boundary conditions kev for the Chukchi Shelf/Beaufort Sea region; а measure of integrated change in the Bering Sea, and an indicator of the role of Pacific Waters in the Arctic Ocean.

2014 CRUISE SUMMARY:

Weather conditions were reasonable for the cruise, although rarely good. Winds 15-20knots were common for most of the cruise – there was only one calm day, Saturday 5th July 2014. Fog was extremely frequent. On the first day in the strait (Tuesday 1st July 2014), sea state/wind was initially too high to attempt the mooring recoveries, and so calibration CTD casts were taken at the stations (first A4. then A2) while we waited for the weather to improve. By midmorning, the weather had improved sufficiently to attempt recovery. Mooring A2 released on first release command and was recovered without incident. Mooring A4 also released on first command and was recovered without incident. During the steam to mooring A3, the weather and visibility worsened, and though the pre recovery CTD cast was accomplished, we postponed the mooring operation till better weather and ran ADCP lines during the night. Wednesday 2nd July 2014 was also very foggy, and we waited until the fog cleared before attempting the operation, especially given the proximity of the Russian border and the possibility (found in previous years) of the mooring being significantly delayed from releasing or requiring dragging. Eventually the fog cleared sufficiently to attempt the operation, and mooring A3 released on first command and was quickly recovered. The weather being workable, all 3 moorings (A3, A2 and A4) were also redeployed that day (with calibration casts post deployment), and CTD operations commenced in the evening ~ 9pm local time. The rest of the cruise was spent with CTDing and ADCP sections. Including test casts for the CTD (7 in number (about half on deck) due to issues with the altimeter and the pump), a total of 219 CTD casts were taken during the cruise, repeating lines run in previous years and running a new line just south of the strait. Although winds were frequently high with sea state ~ 4-5ft, CTD operations were never interrupted by the weather. We left the Bering Strait region ~ 2240 local time on the evening of Sunday 6th July 2014, transiting to Nome for offload on Monday 7th July 2014. We arriving off Nome ~ 1040 local, but spent ~ 2hrs receiving 2 small boatloads of equipment at the request of the USCGC Healy, before docking and offloading.

Overall, the cruise accomplished (to the best of our knowledge) the most extensive quasi-synoptic spatial survey of the southern Chukchi Sea in almost a decade. Similar (though less extensive surveys were taken in 2011 and 2012 from the Khromov [*Woodgate and RUSALCA11ScienceTeam*, 2011; *Woodgate and RUSALCA12ScienceTeam*, 2012] and in 2013 from the Norseman II [*Woodgate and BeringStrait2013ScienceTeam*, 2013]. Prior to that the last extensive surveys were in 2003 and 2004 from the Alpha Helix [*Woodgate*, 2003; *Woodgate*, 2004]). Our 2014 cruise accomplished more stations due to a combination of extremely efficient CTD operations (including taking profiles only, no bottles, and the high winch speed ~ 1m/s). In addition to a large scale water mass survey of the region, the repeat of several lines (and several stations) during this or subsequent cruises this year will allow for quantification of temporal variability. The 2014 Bering Strait mooring cruise also completed the fourth high resolution (~ 1nm) survey of the eddying region just north of the Diomede Islands, this time with underway ship's ADCP and surface temperature and salinity.

This year's cruise took place early in the season, within days of the 2013 cruise. Through winds were northwards for most of the cruise, they turned southwards during the CCL line (the morning of on Saturday 6^{5h} July) and this allowed us to sample the Bering Strait line under two very different wind conditions, although the flow remained northwards in both situations.

For full station coverage, see map and listings below. Preliminary results are given in the various sections.

Summary of CTD lines.

BS (US portion) – the main Bering Strait line, run at the start and at the end of the cruise. This line has been occupied by past Bering Strait mooring cruises. US portion only run here. This line is usually ~ 2nm resolution. In the second running of this section, we decreased the station spacing to ~1nm to better resolve the structure in the strait.

DL – a high resolution (1nm in the southern part) line running north from the Diomede Islands to study the hypothesized eddy and mixing region north of the islands. This was run at the start and end of the cruise.

AL (US portion) – another previously-run line (~ 1.7nm resolution), just north of the Strait, running from the Russian coast, through the mooring site A3, to where the main channel of the strait shallows on the eastern (US) side. US portion only run here.

CS (US portion) – another cross strait line (~ 3.9nm resolution), run here from the US-Russian convention line (~168° 58.7'W) to Point Hope (US).

LIS – from Cape Lisburne towards the WNW, a previous RUSALCA line, run by us also in 2011, 2012 and 2013, and close to the CP line occupied in previous Bering Strait cruises in 2003 and 2004 (station spacing ~ 3.6nm).

CCL – a line running down the convention line (at ~ 10nm resolution) from the end of the LIS line towards the Diomedes (also run in 2003, 2004, 2011, 2012 and 2013), incorporating a rerun of the high resolution DL line at the southern end.

DLa and DLb – two other high resolution lines (1nm resolution), mapping the eddying/mixing region, parallel to DL, allowing for a 2-dimensional mapping of the region.

BS – the original BS line, rerun at ~ 1nm resolution at the end of the cruise.

SBS – a new line, run just south of the strait, crossing the Alaskan Coastal Current before it enters the strait proper (~ 2.2nm resolution).

Summary of ADCP lines

The ship's ADCP recorded for the duration of the cruise. Between mooring operations and some CTD lines, some lines were run exclusively for ADCP, viz

BS line - run at 7 knots east to west and mostly west to east, prior to mooring operations

AL line and part of CHUK line – box of lines run between A2 and A4 recovery and prior to A3 recovery, run at 7knots. (CHUK is an east-west line running SEE to NWW, connecting the end of the A3 line with the CCL line)

Cross strait lines run between east end of NBS and west end of MBS, and east end of MBS and west end of BS (both run at ~ 8knots).

Contents

Cruise Map Science Participants and Norseman II Participants Cruise Schedule

Summary of Science Components

Mooring Operations Table of mooring positions and Instrumentation Schematics of Mooring Recoveries and Deployments Photographs of recovered moorings Preliminary Mooring data figures

CTD Operations Preliminary CTD section plots

Underway Data (ADCP, Temperature and salinity, Meteorology) report

Listing of target CTD positions

References

Event Log

BERING STRAIT 2014 MOORING CRUISE MAP: Ship-track, blue. Mooring sites, black. CTD stations, red. Grey and green arrows indicate direction of travel (grey during mooring operations, green during CTD operations). Depth contours every 10m from the International Bathymetric Chart of the Arctic Ocean (IBCAO) [Jakobsson et al., 2000]. Lower panels give detail of strait region at the start (left) and end (right) of the cruise.

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report - 13th Dec 2014

BERING STRAIT 2014 SCIENCE PARTICIPANTS

Chief Scientist

UW Mooring Lead

UW Postdoc and CTD lead

UW student, CTD and moorings

MIT Project PI, modeler and CTD work

- 1. Rebecca Woodgate (F) UW
- 2. Jim Johnson (M) UW
- 3. Cecilia Peralta Ferriz (F) UW
- 4. An Nguyen (F) MIT
- 5. Robert Daniels (M) UW

UW - University of Washington, US

MIT – Massachusetts Institute of Technology, US

BERING STRAIT 2014 NORSEMAN II CREW

1.	Jack Molan (M)	NMC	Captain
2.	Jim Howard (M)	NMC	Mate
3.	Joanne Molan (F)	NMC	Cook
4.	Harry Burnett (M)	NMC	Night Cook
5.	Jim Wells (M)	NMC	Deck Boss
6.	Austin Church (M)	NMC	Deck Hand
7.	Zach Starrett (M)	NMC	Deck Hand
8.	Jorin Watson (M)	NMC	Deck Hand
9.	John Sankoh (M)	NMC	Engineer
10.	Andy Dyer (M)	SAE	Health and Safety

NMC – Norseman Maritime Charters, http://www.norsemanmaritime.com/index SAE – SAExploration, http://www.saexploration.com/en

Ship contract arranged by

Olgoonik Fairweather LLC, http://www.fairweather.com/fairweatherscience.html

BERING STRAIT 2014 CRUISE SCHEDULE (Times Alaskan Daylight Time (GMT-8) 24hr format)

August 2013 to cruise	Arrangement of charter of Norseman II by NSF and others for the Bering Strait mooring work
End of April 2014	Shipment of container of UW equipment to Nome, ETA mid-June
Thursday 26 th June 2014	Science team (Rebecca, Jim, Cecilia, Robert, An) arrive Nome Port requests onload on Sunday 29 th June, instead of Mon 30 th June
Friday 27th June 2014 (Mild, sunny)	UW Instrument preparation (start instruments, build ADCPs, ISCATS) Rebecca gives talk at UAF-Nome for local community
Saturday 28th June 2014 (Overcast, choppy)	Restuff container Dan Naber arrives and preps UAF ISUS for deployment
Sunday 29th June 2014 (Overcast, swell)	Ship docks from previous charter Start our onload ~ 10:30am, done within a few hours Go ashore again to allow ship to prep Meeting with "Little Sisters" to view old Diomede video
<i>Monday 30th June 2014</i> (Overcast, moderate wind)	<i>On board for 6am departure, Safety briefing, throw lines 7:50am,</i> CTD tests and test casts Discussion of mooring and CTD operations Arrive strait too late for mooring work – run ADCP lines along BS
Tuesday 1st July 2014 (Windy, with fog, wind falling during the day)	On site A4-13 0730, CTD cast, postpone recovery for better weather On site A2-13 0900, CTD cast, postpone recovery for better weather On site A2-13 for recovery 1030, Finish recovery 1052 On site A4-13 for recovery 1230 Finish recovery 1243 Steam to A3-13, cleaning up mooring recoveries On site A3-13 1700 CTD cast, postpone recovery for better weather Run ADCP box section (A3, North, CHUCK, CCL back to A3) at night
Wednesday 2nd July 2014 (Foggy, moderate wind)	On site A3-13 0730, wait for fog On site A3-13 for recovery 0840, Finish recovery 0854 Prep for A3-14 deployment Start A3-14 deployment 1110, Finish deployment 1120 Calibration CTD cast at A3-14 Steam for A2-14, prepping A2-14, then cleaning A3 recovery Start A2-14 deployment 1645, Finish deployment 1655 Calibration CTD cast at A2-14 Steam for A4-14, prepping A4-14 Start A4-14 deployment 1819, Finish deployment 1826 Calibration CTD cast at A4-14 Steam to BS24 Start BSline 2051, running away from US (BS24-BS11)
Thursday 3 rd July 2014 (Foggy, moderate wind)	End BS line 0134, Steam to DI1 Start DI line 0144, running north (DI1-19) End DI line 0644, Steam to A3-14 Start A3 line 0658, running towards US (A3-14 – AL24) End A3 line 1036, Steam to CS10US Start CS line 1804, running towards US (CS10US – CS19)

Friday 4 th July 2014 (Foggy, moderate wind)	End CS line 0303, Steam to LIZ 1 (up coast, avoiding shallows) Start LIZ line 0815, running away from US (LIZ1-14) End LIZ line 1555, Steam to CCL22 Start CCL line 1619, running south (CCL22 – A3)
Saturday 5th July 2014 (Start foggy, moderate wind, wind dropping to evening and turning to northwards, fog clearing to evening, except by islands)	End CCL line 1334, Steam to line DI 19 Start DI line 1351, running south (DI19-DI1) End line 1845, Steam to DLa1 Start DLa line 1901, running north (DLa1-DLa12) End DLa line 2113, Steam to DLb12 Start DLb line 2127, running south (DLb12-DLb1) End line 2349, Steam to NBS1 Science presentation on board between CTD casts
Sunday 6th July 2014 (Wind increasing northward, fog patchy, clearer towards evening, seas rising)	 Start NBS line 0116, running towards US (NBS1-9 with 0.5) End NBS line 0523, Steam to MBSn1 at 8knots ADCPing (Ship's underway system out for transit) Start MBSn line 0823, running towards US (MBSn1-MBSn8 with 0.5) End MBSn line 1202, Steam to BS11 at 8 knots ADCPing Start BS line 1444, running towards US with extra stats (BS11-BS24) End line 2002 Start SBS line 2021, running away from US (SBS2-SBS8) End line 2238, Turn for Nome
Monday 7 th July 2014 (Sunny, light winds, hot)	Off Nome by 1030 Transfer of 2 pallets of equipment from USCGC Healy (1030-1215) Dock ~ 1310 Flat and Container at ship ~ 1430, start offload Offload finished 1610, Deliver Airfreight. Leave ship ~ 1700

TOTALS

7.2 days at sea (away from Nome)	0750 30 th June – 1310 7 th July 2014
7.5 days on ship (including on/offload)	1030-1300 29 th June, 0600 30 th June – 1700 7 th July 2014

Moorings recovered/ deployed:	3/3
CTD casts:	212+7 test casts (5 in water) = 219 CTD records.

SCIENCE COMPONENTS OF CRUISE

The cruise comprised of the following science components:

- Mooring operations

- CTD operations

Line	Cast #s	# Stat	Dist	Time (brs)	Start Time	End Time	Nm per Stat	Hr per Stat
Test sests	4.7	Jiai	(1111)	(1115)			Stat.	Stat.
	1-7	1	-					
Pre Recovery	8-10	3						
Post Deployment	11-13	3						
transit A4 to BS24			10	2.25				
					3rdJuly 2014	3 rd July 2014		
CTD BS24-BS11	14-28	14	25	4.75	0451	0934	1.92	0.34
transit to DI1			0.25	0.17				
					3 ^{ra} July 2014	3 ^{ra} July 2014		
CTD DL1-DL19	29-47	19	30	5.00	0944	1444	1.67	0.26
transit to A3			3	0.25				
					3 rd July 2014	3 ^{ra} July 2014		
CTD A3- AL24	48-60	13	22	3.67	1448	1836	1.83	0.28
transit to CS			73	7.50				
					4 th July 2014	4 th July 2014		
CTD CS10-CS19	61-77	17	63	9.00	0204	1103	3.94	0.53
transit to LIS			37	5.17				
CTD LIS1-					4 th July 2014	5 th July 2014		
14,CCL22	78-95	17	58	8.08	1615	0021	3.63	0.48
transit to CCL21			10	1.33				
					5 th July 2014	5 th July 2014		
CTD CCL21-A3	96-114	18	152	19.83	0144	2134	8.94	1.10
transit to DL19			3	0.28				
					5 th Julv 2014	6 th July 2014		
CTD DL19-DL1	115-133	19	30	5.00	2151	0245	1.67	0.26
transit to DLa1			1.7	0.25				
CTD DLa1-					6 th July 2014	6 th Julv 2014		
DLa12	134-145	12	11	2.20	0301	0513	1.00	0.18
transit to DLb12			1.7	0.25				
CTD DLb12B-					6 th July 2014	6 th July 2014		
DLb1	146-157	12	11	2.33	0527	0749	1.00	0.19
transit to NBS1			11	1.42				
CTD NBS1-					6 th July 2014	6 th July 2014		
NBS9	158-173	17	27	4.27	0916	1323	1.69	0.25
transit to MBSn1			26.5	3.00				
CTD MBSn1-					6 th July 2014	6 th Julv 2014		
MBSn8	174-187	14	21	3.83	1623	2002	1.62	0.27
transit to BS11	-		21	2.70				
			<u> </u>	•	6 th July 2014	7 th July 2014		
CTD BS11-BS24	188-212	25	25	5.27	2244	0402	1.04	0.21
Transit to SBS2			2.1	0.33				
CTD SBS2to					7 th July 2014	7 th July 2014		
SBS8	213-219	7	13.4	2.28	0421	0219	2.23	0.33

- **Underway sampling** – ship-based equipment of 300kHz hull-mounted ADCP; SBE21 underway Temperature-Salinity recorder, and some meteorological data (air temperature, pressure, humidity, wind direction and wind speed).

MOORING OPERATIONS (Woodgate, Johnson, Peralta-Ferriz, Daniels, Nguyen)

Background: The moorings serviced on this cruise are part of a multi-year time-series (started in 1990) of measurements of the flow through the Bering Strait. This flow acts as a drain for the Bering Sea shelf, dominates the Chukchi Sea, influences the Arctic Ocean, and can be traced across the Arctic Ocean to the Fram Strait and beyond. The long-term monitoring of the inflow into the Arctic Ocean via the Bering Strait is important for understanding climatic change both locally and in the Arctic. Data from 2001 to 2011 suggest that heat and freshwater fluxes are increasing through the strait [*Woodgate et al.*, 2006; *Woodgate et al.*, 2010; *Woodgate et al.*, 2012], with 2012 being a year of low flow. The data recovered this cruise will indicate if 2013 shows further increase or a return to older conditions. An overview of the Bering Strait mooring work (including access to mooring and CTD data) is available at http://psc.apl.washington.edu/BeringStrait.html. A map of mooring stations is given above.

Three UW moorings were recovered on this cruise. These moorings (all in US waters – A2-13, A4-13, A3-13 were deployed from the Norseman II in July 2013, with mooring funding from ONR PI: Woodgate, *N00014-13-1-0468*) and ship-time support from NSF-AON and NOAA RUSALCA.

Three UW moorings (A3-14, A2-14, A4-14) were deployed on this 2014 Norseman II cruise under funding from NSF-AON (PI: Woodgate and Heimbach, *PLR1304052*). All these deployments were replacements of recovered moorings at sites occupied since at least 2001 (A4) or 1990 (A2 and A3). Analysis of past data suggests data from these three moorings are sufficient to give reasonable estimates of the physical fluxes of volume, heat and freshwater through the strait, as well as a useful measure of the spread of water properties (temperature and salinity) in the whole strait.

All moorings (recovered and deployed) carried upward-looking ADCPs (measuring water velocity in 2m bins up to the surface, ice motion, and medium quality ice-thickness); lower-level temperature-salinity sensors; and iscats (upper level temperature-salinity-pressure sensors in a trawl resistant housing designed to survive impact by ice keels). Two of the recovery sites (A2, central eastern channel; and A3, the climate site) also carry ISUS nitrate sensors and some biooptics. A single ISUS instrument was redeployed on A3-14. The three recovered moorings carried marine mammal acoustic recorders, and acoustic recorders were deployed on the three new moorings also. For a full instrument listing, see the table below.

This coverage should allow us to assess year-round stratification in and fluxes through the strait, including the contribution of the Alaskan Coastal Current, a warm, fresh current present seasonally in the eastern channel, and suggested to be a major part of the heat and freshwater fluxes [*Woodgate and Aagaard*, 2005; *Woodgate et al.*, 2006]. The ADCPs (which give an estimate of ice thickness and ice motion) allow the quantification of the movement of ice through the strait [*Travers*, 2012]. The nutrient sampler, the transmissometer, fluorometer and marine mammal recording time-series measurements should advance our understanding of the biological systems in the region.

Calibration Casts: Biofouling of instrumentation has been an on-going problem in the Bering Strait. Prior to each mooring recovery, a CTD cast was taken to allow for in situ comparison with mooring data. Similarly, CTD casts were taken at each mooring site immediately after deployment. These postdeployment casts will allow us to assess how effective this process is for pre-recovery calibration. Since the strait changes rapidly, and CTD casts are by necessity some 200m away from the mooring, it is inevitable that there will be differences between the water measured by the cast and that measured by the mooring. **Action item: On recovery, check the post deployment casts to see how reliable the comparison is.**

2014 Recoveries and Deployments: Mooring operations went very smoothly in 2014.

For recoveries, the ship positioned ~ 200m away from the mooring such as to drift towards the mooring site. Ranging was done from the port aft corner of the ship or directly aft of the ship, with the hydrophone connecting to the deck box inside at the aft end of the port laboratory. Without exception, acoustic ranges agreed to within 30m of the expected mooring position. Once the ship had drifted over the mooring and the acoustic ranges had increased to > 70m, the mooring was released. This procedure was followed to prevent the mooring being released too close (or underneath) the ship since in previous years the moorings have taken up to 15min to release.

All the moorings released immediately and were sighted at the surface within seconds of the confirmation of the release code. The recovered moorings were all equipped with springs in the release mechanism, to assist with freeing the mooring hook on release. It appears this function well, and thus the springs should be used in all future deployments. These springs were included in the 2014 deployments. Action item: Use springs on all future mooring deployments. Note that no problems were found with mooring releases on this cruise, even though only a short amount of chain (1m) is between the release and the anchor. This supports previous ideas that some mooring release issues related to the bottom pressure gauges on the mooring, rather than the shortness of the release to anchor distance. Action item: Review Bottom Pressure Gauge design for future use. Although biofouling was light, some biofouling was present on the release links, especially those painted with red paint – more success was found with the blue antifouling paint. Action items: Continue with biofouling paint on releases and with double releases, but check that paint does not foul the release or the spring.

In all cases, once the mooring was on the surface, the ship repositioned, bringing the mooring tightly down the starboard side of the ship. One boat hook and a pole with a quick releasing hook attached to a line were used to catch the mooring, typically on a pear link fastened to the chain between the float and the ADCP. The line from the hook was then passed back to through the stern A-frame, and tied with a "cats paw" knot to a hook from the A-frame. This portion of the mooring was then elevated, allowing the second A-frame hook to be attached lower down the mooring chain, and tag lines to be attached if necessary. The iscat, if present, was recovered by hand at a convenient point in this operation, prior to recovery of most of the mooring. Then the entire mooring was then elevated and recovered onto deck. Recovery work was done by a deck team of 4 crew of the Norseman II – one on the A-frame controls, three on deck with on overhead safety lines ("dog runs") down each side of the deck (one of these working forward of the deck on tag line)s. Once on deck, the moorings were photographed to record biofouling and other issues. Action items: be sure to add pear-link to the chain between float and ADCP; high A-frame or crane very helpful for recovery.

The A-frame of the Norseman II is atypically high (~ 26ft less block attachments). While this is extremely useful in fair weather, it allows for swinging of the load in rougher seas. Action item: Consider tag line options for recovery in rougher weather.

Both fog and sea-state hindered mooring recoveries this year, although we had the opportunity to wait out both. Fog is a danger to mooring recoveries since the mooring may delay releasing due to biofouling, or the mooring may require dragging. Given the proximity of A3 to the US-Russian border, small boat operations may also be necessary during a dragging operation to prevent the surfaced mooring drifting out of the US EEZ. Action item: Continue to include weather days in the cruise plan; plan also for small boat operations (including sending a battery powered release unit). It is worth remembering that in calm seas, the ship's radar may be able to pick up the steel float on a surfaced mooring, and also that foggy conditions are more common near the islands.

Biofouling was moderate to light in the recoveries this year, with A4-13 being the most fouled as per last year. Fouling was by barnacles and bryozoan-like growth on several parts of the moorings. Overall though, release hooks were generally clear of biofouling, and, salinity cells were clear of biological growth. Note that the SBEs included in the ISUS instrument cage on A2-13 and A3-13 were only at a slight (~ 10deg) angle to the horizontal. Action item: Check A2-13 and A3-13 optics SBE data for possible problem of slit gathering in cell, degrading salinity measurements as in past years (see data discussion below). Continue to mount SBEs as close to vertical as possible.

Mooring deployments were done through the aft A-frame, using the A-frame hook for lifting. The height of the Norseman II A-frame was extremely advantageous for these deployments. Lacking such an A-frame, alternative ships might consider lifting the mooring with the crane, rather than the A-frame. The mooring was assembled completely within the A-frame. The ship positioned to steam slowly (~1 knots) into the wind/current, starting between 250m and 600m from the mooring site (the latter at A4 due to the stronger currents.) At the start of the deployment, the iscat was deployed by hand and allowed to stream behind the boat. The first pick was positioned below the ADCP, allowing most of the mooring to come off the deck during the first lift. Then, the A-frame boomed out to lower these instruments into the water. Tag lines were used to control the instruments in the air. **Action item: use deck cleats to fair tag lines rather than relying on body weight.** The first pick was released by a

mechanical quick release, which was then repositioned to lift the anchor. Some issues were encountered in getting the releases off the deck after the first pick. If the pick was insufficiently high, the releases would still be on deck when the first package was in the water. The releases would then slip off the deck inelegantly. It was found (by the third deployment) that a higher lift of the instruments allowed the releases also to be lifted from the deck and then hang nicely behind the ship once the ADCP was placed in the water. The anchor was lifted into the water just prior to arriving at the site. When the ship arrived on site, the anchor was dropped using the mechanical quick release. Positions were taken from a hand-held GPS on the upper aft deck, some 5m from the drop point of the mooring. These positions match to within 30-60m of the ship's measurements of the GPS of the aft A-frame. **Action item: Continue to bring own GPS unit.** A team of 4-5 crew did the deployments, with one person on the A-frame, 3 on the "dog runs' assisting the instruments up into the air, and other members assisting with tending the quick release lines during lifting. The lines were passed off to the crew on the dog runs prior to deployment.

Action items: design pick points into the moorings for recover; continue to put 2 rings on the anchors for tag lines. Consider using chain, not line for the moorings (saves on splicing and gives extra pick points); Compute the best pick point, such that the releases are lifted free of the deck, rather than slipped over the edge.

Instrumentation issues: Most instrumentation was started in Nome or aboard ship in the days prior to sailing. All instrumentation was started successfully, using the older laptops. Action item: Check new laptops with all instrumentation. Iscat housings and ADCP frames were assembled using a team of 4 people in Nome (2 teams of 2). Although most of the mooring starts and building was accomplished in 1 day, the second day was necessary to restow the container and allow for unforeseen issues, and the 3rd day to allow for early loading, as was the case this year. The iscat loggers were equipped this year with again with lithium batteries. One coupler was found to not work. New software for the ADCPs was found to erase the bottom track measurements unless preventative steps were taken. Action item: Start inventory numbers of the couplers, continue to test each coupler with an iscat prior to deployment. Find out about servicing/testing of couplers. Make sure all spare instruments contain batteries.

Overall, data recovery on the moorings was excellent. All instruments were downloaded using the older laptops with serial ports. Action item: Bring same number of laptops for these downloads.

ISCAT SBE37IMS: Of the 3 iscats deployed on the recovered moorings, only 1 top sensors containing the inductive SBE37s (A3-13) was recovered. The recovered SBE37IM downloaded without incident, and returned a full data record. Both the lost iscats had broken predictably at the weak link. Logger data showed the iscats to have been lost on the 29th March 2014 at A2-13 and on the 13th May 2014 at A4-13.

ISCAT LOGGERS: All 3 loggers were operational on recovery. For the 2 systems where the iscat was lost (A2-13 and A4-13) the loggers (logger 24 on A2, and logger 21 on A4) yielded good data up to the presumed point of iscat loss. In each case, at one point during the deployment the logger failed to write one record. As the data are at 30 minute intervals and the clock drift is ~ 15min, this time discrepancy was neglected during data processing. This should be revisited if time accuracy of less than 1hr is required. The record from logger 04 on A3-13, although full length, contained several lines of erroneous data (,-55392.9179, -1.23695, -104730.687). Since the iscat was recovered, time was not taken to correct this logger record. Action item: Investigate why logger 04 wrote erroneous data. Purchase new iscats for 2015 deployments. On recovery, check on the tightness of the IM couplers on the wire incase that is the cause of erroneous data.

. **ADCPs:** All the 3 ADCPs recovered were still running on recovery, and all yielded good data on download. **Action item: do on shore checks of all compasses; use remaining battery to run tests on 2269, 12756, 13758**

SBEs: A seabird SBE16 was recovered from each mooring. None of these instruments were pumped. A4-13's SBE16 was in the usual vaned frame used by UW in the strait. A2-13's SBE was vaned on the marine mammal recorder on that mooring, a similar mounting to A4-13. On mooring A3-13, the SBE16 was deployed on the ADCP frame without vaning. All salinity cells were clear on recovery, although a preliminary comparison with recovery CTD casts suggests the salinities

(calculated using the pre-mooring calibrations) have likely drifted erroneously fresh. Sizeable (up to 0.1 psu) changes over the year are not uncommon in past data, as the salinities cells are scoured by sediment. Action item: revisit this once post-calibrations on the instruments (including the CTD casts) are complete. Oddly, the SBE16instrument on A2-13 appears to read anomalously fresh (0.5psu) for ~ 2 months near the start of the deployment compared to other sensors on the mooring. Action item: Investigate this.

In addition, moorings A2-13 and A3-13 also carried SBE16plus instruments, duplicating temperature and salinity records and including also some optical sensors (A2-13- PAR and Wetlabs Flntus sensor with biowiper; A3-13 – fluorometer). These instruments were pumped but were mounted ~ 10deg from horizontal, and there have been issues in the past with salinity cells becoming blocked with sediment causing salinity drift. A preliminary comparison suggests this is certainly an issue on A2-13, where the SBE16plus instrument is reading under 30psu by the time of recovery, compared to 31.5 and 31.7psu from the SBE16 and the CTD cast respectively. Action item: Revisit this once the post-cruise calibration are complete. At the time of writing, no study has been made of the biological data from these instruments. Calibration information for these sensors is not available to us currently and the biooptic data are not included in this report. In both cases, the sensors appeared clean on recovery, but note that the biowiper on A2-13 (4112) was jammed open. Action item: Investigate the biooptics data. Note also, the SBE16plus on A3-13 (7052) was set to record at 0030, 0130, 0230 etc rather than on the usual whole hour. Also the SBE16plus on A2-13 (4112) appeared to have a much earlier data point at the start of the record, however by nominally adjusting this start time it is possible to obtain a good match of timestamps with in the water times.

Action items: Do more thorough comparison of salinities with CTD casts and consecutive moorings. Revisit all prior salinity records. Mount SBEs vertically. Clean cells on instruments.

A preliminary review of the SBE data show annual cycles of temperature and salinity. Direct comparison with older data is necessary to ascertain if preliminary indications of freshening from previous years is significant.

Other Instrumentation: Other instrumentation on the moorings were recovered for other groups. These instruments are:

ISUS nitrate sensors on A2-13 (#124) and A3-13(#250). These instruments were deployed by Dan Naber on behalf of Terry Whitledge, UAF. The A2-13 ISUS (#124) ran successfully for the whole deployment. The A3-13 ISUS (#250) had good data until 1st January 2014, when it appears the battery failed.

Aural Marine Mammal Acoustic sensors on A2-13 (#235), A4-13(#234) and A3-13 (#233). These instruments were deployed by Kate Stafford, (UW). At the time of writing, we have no information as to how these instrument ran.

Details of mooring positions and instrumentation are given below, along with schematics of the moorings, photos of the mooring fouling, and preliminary plots of the data as available.

BERING STRAIT 2014 MOORING POSITIONS AND INSTRUMENTATION

ID	LATITUDE (N) (WGS-84)	LONGITUDE (W) (WGS-84)	WATER DEPTH /m (corrected)	INST.						
2013 Mooring Recoveries										
A2-13	65 46.86	168 34.05	56	ISCAT, ADCP, SBE16+FI+PAR with ISUS, SBE16 with MMR						
A4-13	65 44.75	168 15.75	49	ISCAT, ADCP, SBE16, MMR						
A3-13	66 19.62	168 57.06	58	ISCAT, ADCP with SBE16, SBE16+FI with ISUS, MMR						

ID	LATITUDE (N) (WGS-84)	LONGITUDE (W) (WGS-84)	WATER DEPTH /m (corrected)	INST.					
2014 Mooring Deployments									
A2-14	65 46.85	168 34.09	56	ISCAT, ADCP, SBE16 with MMR					
A4-14	65 44.72	168 15.82	49	ISCAT, ADCP, SBE16, MMR					
A3-14	66 19.60	168 57.06	58	ISCAT, ADCP with SBE16, SBE16 with ISUS, MMR					

ADCP = RDI Acoustic Doppler Current Profiler

FL=Wetlabs Biowiper Fluorescence & just Fluorescence; PAR=Photosynthetically active radiation ISCAT = near-surface Seabird TS sensor in trawl resistant housing, with near-bottom data logger ISUS= Nutrient Analyzer SBE16 = Seabird CTD recorder

MMR=Marine Mammal Recorder

SBE16+ = Seabird CTD 16plus recorder

BERING STRAIT 2014 SCHEMATICS OF MOORING RECOVERIES AND DEPLOYMENTS

RECOVERED = in the eastern channel of the Bering Strait

= at the climate site, ~ 60km north of the Strait

½ m. Chain (Long Link)→

1m. Spectra Line ---

AURAL M-2 S/N 0113LF

Bottom Depth: 56 m

% m. Chain (Long Link) ->

% m. Chain (Long Link) -+

1m. Spectra Line

% m. Chain (Long Link) -

Bottom 49 m.

5/8" Swivel ->

Enable 302041 Disable 302062 Release 324117 Int. 09.0 KHZ Reply 10.0 KHZ Ü

EG&G 8242 S/N: 32832 -

5/8* Sur

5/8 Swivel -> E646 822 E040 822 Enable 302007 Disable 302007 Disable 30208 Release 324066 Int 12.5 KHZ Rept 10.0, IAZ

+

½ m. Chain (Long Link)

MOORING ID: A2-14

Corrected Depth: 56 m.

Bridge position 65° 46.864 N. 168° 34.080 W

Deploy Date: 03 July 2014

Deploy Time : 0055 UTC

MOORING ID: A4-14

Corrected Depth: 48.5 m.

Deploy Date: 03 July 2014 Deploy Time : 0226 UTC

Recovery Date Recovery Time

Ver. 03 05 July 14

Bridge position 65* 44.749 N. 168* 15.777 W.

Latitude: 65 44 723 N.

Longitude: 168 15.819 w.

+ <u>.3.0m draft</u> 48.5 m

Recovery Date: Recovery Time:

Ver. 03

BERING

Latitude: 65 46 849 N.

Longitude: 168° 34.093 w.

ter 53.0m belo + <u>3.0m draft</u> 56.0 m

ISCAT SBE-37IM S/N 8964

1/4" Neilspin (Iscat & Term. 27 m.Wire rope (+1.2m)

Depth _____m

- 5/8" S.S. - Weak link

ADCP S/N 1495

Depth 47 m. - Logger S/N 26

→ 5/8" Galv. - ½" Galv.

- 30" Steel Float

1- 5/8" Galy - 1/" Gab

Galv. Ring - ½" Galv

Swivel - 5/8" Galv.- ½" Galv. SBE-16 S/N 1935 Depth 52 - Swivel - 5/8" Galv.- ½" Galv.

EG&G 8242 S/N: 17302 lo 566717 lo 566666

+ 1.0m Chain (Long Link

Anchor Dry Wt = 1700

SBE-37IM S/N 5472

Depth ______16_m.

1/4" Neilspin (Iscat & Term.) 20 m. Wire rope (+ 1.2m)

- 5/8" S.S. - Weak link

← ADCP S/N <u>12845</u> Depth <u>39</u> m. ← Logger S/N <u>23</u> ← 5/8" Galv. ← 5/8" Galv. ← 5/8" Galv.

- 30" Steel Float

- 5/8" Galv. Galv. Ring - ½" Galv

% " S.S. - %" G

Aural M2 (1.8m) S/N 0234LF Depth 44 m.

- % " S.S. - %" Galv

✓ "Galv. - %" Galv.
 ✓ "Galv. - %" Galv.
 ✓ 5%: 17301
 ✓ 5%: 17301
 ✓ Fisher 566632
 Øiable 566643
 Øiable 566629
 Paless 544333
 Int. 11.5 KHZ
 Paply 10.0 KHZ
 ✓ 5%" Galv.

Anchor Dry Wt. = 1700

± 1m Chain (Long Link - %" Galy

1 +

- 1 galv. link - %" Galv. - SBE-16 S/N 2264 Depth 42 m.

1 galv. link - 1/2" Ga

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report – 13th Dec 2014

ong Link

BERING STRAIT 2014 RECOVERY PHOTOS

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report – 13th Dec 2014

BERING STRAIT 2014 RECOVERY PHOTOS (continued)

BERING STRAIT 2014 PRELIMINARY ADCP RESULTS

- NORTHWARD VELOCITY from ADCPs

A3-13 VELOCITY NORTH (v) Avg = 229 ±332 Sel: 1 to 17615 Sub: 1 to 256 _____ · 21 40 - 19 · 17 15 30 Range (m) 13 B 11 - 9 20 7 - 5 10-• 3 1 17000 17596 14/07/03 07:30:00.00 2000 3000 4000 5000 6000 7000 8000 9000 Ensemble 10000 11000 12000 13000 14000 15000 16000 1000 1 13/07/01 18:00:00.00 Date Time

BERING STRAIT 2014 SBE PRELIMINARY RESULTS

Comparison of SBEs on A2-13 and A3-13, using Precruise calibrations 13th July 2014

		======	<u>====A</u>	<u>3-13====</u>								
UW	SBE16	1698	ADCP	rame	Notvaned	Not pumped	45m	precal Dec12				
UAF	SBE16p	7052	ISUSfr	ame, Hz	Notvaned	Pumped	50m	precal Apr12				
%				-								
Deplo	Deployment comparison CTD BStrait2013 Cast number 8 (after shipboard correction)											
5 th Ju	ly 2013, 20	01-2018						-				
Pres(db) Temp	(DegC)	Sal(ps	su)	Density(kg/m3)	Depth(m	n)					
45.21	2 0.818	31	32.29	77	1026.0986	44.760						
50.29	3 0.818	34	32.29	77	1026.1227	49.789						
SBE I	First record	d SBE16	98 at 45	im								
	TIME(GM1	Γ)	Press	(db)	Temp (DeqC)	Salinity	(psu)					
2013	07 05 20 00	Ó 45.05	45.09	` <i>44.64</i>	0.824	32.309						
SBE I	First record	d SBE70	52 at 50	m (NB 3	30min later)							
	TIME(GM1	Γ)	Press	(db)	Temp (DeaC) Salinitv	(psu)					
2013	07 05 [`] 20 30	Ó 49.11	49.11	48.62	0.784	32.306	u ,					
%												
CON	CLUDE: Bo	th record	s show	temperat	ure and salinitie	s falling						
- TEN	IP: 50m coo	oler as lat	er, but l	, both spar	n CTD reading (v	within0.006dec	C at sa	ame time)				
- SAL	INITY: with	in 0.01ps	su	•	0 (•	,				
%												
%												
Reco	very comp	arison C	TD Bst	rait 2014	Cast number1	0 (after shipb	oard co	orrection)				
2 nd Jt	ıly 2014 Ö1	02 (Dua	l senor	s)		, i		,				
Pres(db) Ten	np(DeaC))	, Sal(psu)) Densit	v(ka/m3)						
45.00	0 1.4671	1.468	0 32.5	452 32	.5351 1026.2	2556 1026.24	75					
50.00	0 1.4473	1.452	4 32.5	445 32	5337 1026.2	2801 1026.27	11					
SBE I	Record SB	E1698 at	45m									
	TIME(GM)		Press ((db)	Temp (DeaC)	Salinity(กรม)					
2014	$07 02 01 1^{-1}$	1 45.08	45 12	44 67	1 461	32 144						
SBE	Record SB	F7052 at	50m (N	IB 30mir	off whole hou	r)						
	TIME(GM)	со_ а. Г)	Press	(db)	Temp (DeaC)	., Salinitv	(nsu)					
2014	07 02 00 30	, 1 49 16	49 17	48 68	1 401	32 488	(~~~)					
2014	07 02 00 00) 40 12	49 12	48 64	1.543	32 402						
<u>%</u>		, , ,,,,		-0.07	1.040	02.732						
				-								

CONCLUDE:

- TEMP: agree well (Note warming and lies between 2 readings at 50m) (within 0.01degC at same time) - SALINITY: CTD is saltier than both measurements 32.54, and 45m is fresher 32.1 versus 50m 32.49. It appears that both moored SBEs are drifting fresh. **ACTION ITEM: revisit this with postcals from SBES.**

%-----

A313sbecomparison.jpg, plotted in sberecover plot2014sbefiles.m

				<u></u> _	<u>A2-13=</u> =	<u></u> _	;		<u></u>			====
UAF	SB	E16p	4112	ISUS	frame, I	Hz No	tvaned	Pu	mped	48m	precal	Sep10
UW	SB	E16	1700	Own	frame	Va	ned	Not	t pumped	50m	precal	Nov12
%												
Depl	oyme	ent cor	mpariso	on CTD	s BStra	nit2013	Cast n	umber §	9 (after s	hipboar	d corre	ction)
6" JI	uly 20)13, 01	05 011	5		Dev		(Denth			
Pres	(<i>ab)</i>	1 emp	(DegC)	Sai(OSU)	Der	isity(kg	/m3) z		<i>m)</i>		
40.3	37 20	0.007	0	32.2	249	102	20.0007	, D	47.000)		
49.00 SRF)0 Firet	0.007		32.20 A te 211	18m	102	20.0730)	49.370	,		
ODL	TIM	F(GM)		Pres	s (db)	Te	mn (De	eaC)	Salinit	v(nsu)		
2013	07.06	50104	48.0	0,000) ()	608	,g0)	32.2	55		
2013	07 06	5 02 04	48.0	0.0	0.00	0	.579		32.2	53		
SBE	First	record	d SBE1	700 at \$	50m							
		TIME		F	Press		Temp		salinity			
74	2013	07 06	01 00	34.68	34.80	34.45	0.637	2.7516	32.288	187.04	17	
75	2013	07 06	02 00	49.60	49.72	49.22	0.578	2.7423	32.220	187.08	34	
%												
% Reco	overy	сотр	arison	CTD B	 strait 20	14 Cas	t numk	oer9 (aft	er shipb	oard co	rrection)
1 ^ະ	uly 20)14_16	58 1701		0.1/							
Pres	(<i>ab</i>)	1 en	np(Deg) 075	Sai(p	su)	470	Densit	у(кg/m3)	6000		
40.00 10 00	20	1.093	1.0	973 · 078	31.7300 21 7205	31.7	17Z 17A	1025.03	90 1023. 17 1025	6228		
49.00 50.00)0)0	1.093	7 10	970 · 976	31.7303	31.7	172	1025.04	47 1023. 80 1025	6384		
SBE	Reco	ord SB	E4112 a	at 48m	51.1233	51.7	172	1020.04	03 1020.	0007		
	TIM	E(GM)	、 ()	Pres	s (db)	Te	mp (De	aC)	Salinit	v(psu)		
2014	07 0 ²	1 16 04	ý 48.0	0.0 0.0	0.0) 0	.993	J - /	29.21	2		
2014	07 0	1 17 04	4 48.0	0.0	0.00) 1	.080		29.23	8		
2014	07 0'	1 18 04	4 48.0	0.0	0.00) 1	.126		29.25	3		
SBE	Reco	rd SB	E1700 a	at 50m								
		TIME		F	Press		Temp		salinity			
8729	2014	4 07 0 ⁻	1 16 12	49.53	49.65	49.16	0.992	2.7214	\$ 31.527	547.67	50	
8730) 201	4 07 0	1 17 12	49.55	49.67	49.18	1.081	2.731	4 31.565	547.7	166	
8731	l 201	4 07 0	1 18 12	49.54	49.66	49.17	1.121	2.735	9 31.580	547.7	583	
%												
)E:	- 11 - 1 - 4		- 1	1- 0.00						
·IEN	VIP: ag	gree w	ell - bet	ween ir	strumer	nts 0.00	saegC,	, and to (0.01 טוכ	aeg C		

- SALINITY: CTD is saltier than both measurements 31.73, with 50m record being 31.565 and 48m being far too fresh at 29.25.

It appears that both moored SBEs are drifting fresh, horizontal one especially so. **ACTION ITEM:** revisit this with postcals from SBES.

ACTION ITEM. For about 2 months, SBE at 50m (1700) is ~ 0.5psu too fresh for some reason. Investigate this also.

A213sbecomparison.jpg, plotted in sberecover plot2014sbefiles.m

BERING STRAIT 2014 PRELIMINARY SBE RESULTS

- all lower level TS Sensors

BERING STRAIT 2014 PRELIMINARY ISCAT RESULTS

Bering Strait A413 Prelim Prelim r=A4 b=A2,g=A3 Color=is13cat,k=sbe

BERING STRAIT 2014 PRELIMINARY ISCAT AND SBE RESULTS (per mooring) A2-13 A4-13

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report – 13th Dec 2014

28

30 31 Salinity(psu) 32

33

-2-27

CTD OPERATIONS (Peralta-Ferriz, Woodgate, Daniels, Nguyen, Johnson)

As in previous years, the moorings were supported by annual CTD sections, although in contrast to previous years, no water samples were taken during the cruise.

The CTD rosette system used on this cruise was loaned APL-UW. The full package consisted of:

One SBE9+ with pressure sensor (SN5915 – calibration 8th April 2010)

Two SBE3 temperature sensors (SN0843, SN0844 – calibration 23rd Feb 2012)

Two SBE4 conductivity sensors (SN0484, SN0485 – calibration 6th March &23rd Feb 2012)

Two SBE43 oxygen sensors (SN1753, SN1754 – calibration 22nd March & 14th March 2014)

One Wetlabs FLNTURT fluoresence/turbidity sensor (SN1622 – calibration 11th March 2010) One Benthos Altimeter (SN50485)

Two Seabird pumps (SN0340, SN5236)

One ORE Offshore pinger UAT-376 (SN1933)

The temperature, conductivity and oxygen probes were paired as

	Temperature	Conductivity	Öxygen	Pump
Primary	#843	#484	#1753	50-02-05-0340
Secondary	#844	#485	#1754	5T-90543-05-5236

with a y-like connection system, whereby the exit vent of the loop was at the same depth as the intake as per recommendation from the manufacturer. The top of the Y contained a slow leak valve to keep the system sea-water primed on removal from the water. Tests in Seattle and at sea showed air in the system was expunged after ~ 45s of emersion in water.

All instruments were housed in one frame (see below), weighted with diving weights to ensure a close-to-vertical cast. In this trial format, weights were attached by lashing. Initially the CTD was weighted with 20lbs of weight. With this weight, the difference between wire out and change in pressure was ~ 2-3m in a 50m cast. The weight was increased to 40lbs. This did not noticeable alter the difference between wire out and change in instrument pressure, but the greater weight was used for the rest of the cruise. **ACTION ITEM: Revisit fastening of weights to the frame.**

The CTD was connected to a conducting wire winch on the ship. This winch (Rapp Hydema NW, SOW 160 5000m capacity, with 3 conductor 0.322"diameter wire), was new this year on the Norseman II. Chris Siani, APL, assisted with wiring and CTD tests of this system while the ship was in Seattle in May 2014. The winch was connected to an SBE11 deckbox, which in turn was linked via serial ports and USB-serial connectors to a dedicated PC, running the software package Seasave v7. Data were recorded in standard hexadecimal SBE format, incorporating NMEA GPS input from the Norseman II aft A-frame. An event log was maintained on the CTD computer. The log, and data files (and a screen dump of the cast) were copied to a thumb drive as a backup after each cast.

The CTD console was set on the port side of the interior lab. The package was deployed through the aft A-frame using a special block supplied by the ship. Although a Pentagon ULT unit had been mounted inside by the CTD console for lowering and raising the CTD, in practice, the winch driving was done by a crew member on deck, directed by the CTD operator using radio commands. This was deemed more efficient given the shortness of the casts (50m or less).

The A-frame was set slightly outboard and not repositioned during the cast - the package was lifted to the height of the aft rail of the ship by the winch, and swung inboard by hand. For the casts done during mooring operations, the CTD was hand-carried forward after each cast to the port-forward corner of the aft-deck, to clear the aft-deck for mooring work. Once all the mooring work was complete, the CTD package was kept at the rail.

The winch appeared to have only one speed (1m/s). This was used throughout the cruise (resulting in extremely speedy CTD operations), however, a slower (~ 0.5m/s) speed would be more appropriate for data collection on these casts. **ACTION ITEM. Investigate if a slower winch speed is possible.** Overall, although operations were successful and speedy, there appeared also to be little flexibility in the winch speed during recovery and deployment of the CTD (i.e., the system was either on at full speed, or off). Since the A-frame and block are high on this ship, this situation was workable although with a longer package, there could be some danger of blocking the instrument on recovery. **ACTION ITEM: Investigate more subtle ways of controlling winch speed for deployment and recovery.** Towards the end of the cruise, it was found that power surges from the winch were causing

other electrical problems (blowing surge protectors) in other circuits on the ship. This was addressed by moving the winch control onto a separate circuit. **ACTION ITEM: Investigate electrical effects of winch surging**.

Once mooring work was complete, CTD operations were run 24hrs, using a team (per watch) of 1 science team member driving the CTD, and 2 ship's crew on deck (one driving the winch, one recovering the instrument). The efficiency of the crew made for very speedy CTD operations, and combined with the fast winch speed, resulted in record low times for running lines (see table above).

The turbidity sensor was cleaned by rinsing with soapy water and freshwater and wiping prior to each cast. After each line, the CTD was washed down with freshwater. Prior to packing, the cell was flushed with freshwater. **ACTION ITEM: Bring syringe with better fit for flushing the CTD cell.**

Ship's draft is 3m, and this should be taken into account in viewing the data.

Two major problems were experienced with instruments in this CTD set up:

1) Pump turn on. The SBE9 system contains a hardwired pump control, which is designed to turn the pump on automatically 1minute after the system is immersed in salt water. Despite numerous tests, this function did not appear to work. A workaround was found using an extra serial port connection to the SBE11 from the PC and turning the pump on and off manually for each cast in Seasave. **ACTION ITEM:** Investigate automatic pump turn on failure.

2) Altimeter. The altimeter misfunctioned for all casts of the cruise, with the possible exception of the test cast, which was in very shallow (~ 10m) water. Frequently, reasonable numbers were given during the surface soak. but the readout subsequently remained at this value during the cast. The frequency of the altimeter is 200kHz, which is also one of the frequencies of the ship's turning off the echosounder. However, ship's echosounder at the bridge during the cast did not fix the problem. Note the ship's ADCP is also functioning at 300kHz, and possibly could be another source of interference. Use of extra weight on the CTD (addressing the possible issue of the CTD kiting on lowering) did not solve the issue either. Finally, we abandoned attempts to solve this and just used the ship's echosounder depths and the SBE pressure sensor to decide on final depth for the CTD cast. Our target bottom depth thus became 3m above true bottom. Very occasionally (~ 2-3 casts) there was some indication in the CTD data that the instrument may have hit bottom or encountered something just above the seafloor (e.g., cast 99, which gave profiles consistent with sucking something into the conductivity sensors) however there was no evidence of damage to the system.

The CTD casts number 219 in total, including 7 test casts taken (some in water, some on deck) taken prior to arrival in the strait region (see map and table above).

Preliminary data processing was done on board by Cecilia Peralta-Ferriz, using the Seabird data processing software as described below.

CTD PROCESSING NOTES

% BERING STRAIT 2014 -- CTD DATA % NOTES ON POST-PROCESSING OF SBE 911 DATA: STEP BY STEP % July 14, 2014

- % Peralta-Ferriz, Cecilia (ferriz@apl.washington.edu)
- % OPEN SBE Data Processing software

% a) DATA CONVERSION:

- % *In FILE SETUP
- % -- CHECK box on match instrument to configuration file
- % -- Choose input file (should be .HEX) and directory
- % -- Choose output directory
- % *In DATA SETUP
- % -- Convert data from: Downcast (since we did not take bottle samples this year)
- % -- Create file types: data (.CNV) only
- % -- Select output variables... for 2014 data I chose
- % -- 1) Pressure, Digiquartz (db)
- % -- 2) Temperature (ITS-90, degC)
- % -- 3) Temperature,2 (ITS-90, degC)
- % -- 3) Conductivity (S/m)
- % -- 4) Conductivity, 2 (S/m)
- % -- 6) Oxygen raw, SBE 43 (Volts)
- % -- 7) Oxygen, SBE 43 (% saturation)
- % -- 8) Fluorescence WET Labs WET star (mg/m^3)
- % -- 9) Upoly 0, FLNTURT
- % -- Source for start time in output .cnv header: Select NMEA time

% b) FILTER:

- % *In DATA SETUP
- % -- Lowpass filter A(sec): 0.5 (gave better results than no filter)
- % -- Lowpass filter B(sec): 0.15
- % --> SPECIFY FILTERS
- % -- Temperature: Lowpass filter A
- % -- Temperature,2: Lowpass filter A
- % -- Conductivity: Lowpass filter A
- % -- Conductivity,2: Lowpass filter A
- % -- Pressure: Lowpass filter B
- % -- Oxygen raw: Lowpass filter A
- % -- Oxygen %: Lowpass filter A
- % -- All others: None
- % *In FILE SETUP
- % -- I suggest add append = F05and15 ...% this indicates data was filtered
- % c) ALIGN:
- % *In DATA SETUP
- % --> Enter Advance values
- % -- Oxygen: 5 (as recommended in SBE9+ manual (2 to 5))
- % -- All others: 0
- % *In FILE SETUP
- % -- Append added = A

% d) CELL THERMAL MASS:

- % *In DATA SETUP (correct both Primary and Secondary values)
- % -- Thermal anomaly amplitude [alpha]: 0.03 (suggested for SBE9+)
- % -- Thermal anomaly time constant [1/beta]: 7 (suggested for SBE9+)
- % *In FILE SETUP
- % -- Append added = CTM
- % e) LOOP EDIT:
- % *In DATA SETUP
- % -- Minimum ctd velocity (m/s) = 0.25
- % --> Check box Remove Surface soak = 5 m
- % -- Surface soak depth (m) = 2
- % -- Minimum soak depth (m) = 4
- % -- Maximum soak depth (m) = 6
- % --> Check box Use deck pressure as pressure offset
- % --> Check box Exclude scans marked bad
- % *In FILE SETUP
- % -- Append added = L
- % f) DERIVE:
- % *In DATA SETUP
- % --> Select derived variables... add:
- % -- Salinity (psu)
- % -- Salinity,2 (psu)
- % -- Density (kg/m3)
- % -- Density,2 (kg/m3)
- % -- Oxygen, SBE 43 (ml/l)
- % -- Oxygen, SBE 43 (%saturation)
- % -- Potential Temperature (ITS-90, degC)
- % -- Potential Temperature,2 (ITS-90), degC)
- % -- Density (sigma-theta)
- % -- Density,2 (sigma-theta)
- % *In FILE SETUP
- % -- Append added = D

% g) BIN AVERAGE:

- % *In DATA SETUP
- % -- Bin type = Pressure
- % -- Bin size = 1
- % --> Select Exclude scans marked bad
- % -- Scans to skip over = 0
- % -- Cast to process = Downcast
- % *In FILE SETUP
- % -- Append added = B
- % h) ASCIIout:
- % *In FILE SETUP
- % --> Select Output header file
- % --> Select Output data file
- % --> Select Exclude scans marked bad
- % -- Column separator= Space
- % --> SELECT OUTPUT VARIABLES
- % -- Pressure (db)
- % -- Temperature (ITS-90, degC)

- % -- Temperature, 2 (ITS-90, degC)
- % -- Conductivity (S/m)
- % -- Conductivity, 2 (S/m)
- % -- Oxygen raw, SBE 43 (V)
- % -- Oxygen, SBE 43 (% saturation)
- % -- Fluorescence, WET Labs ECO-AFL/FL (mg/m3)
- % -- Turbidity, FLNTURT (NTU)
- % -- Salinity (psu)
- % -- Salinity,2 (psu)
- % -- Density (kg/m3)
- % -- Density,2 (kg/m3)
- % -- Potential Temperature (ITS-90, degC)
- % -- Potential Temperature,2 (ITS-90), degC)
- % -- Density (sigma-theta)
- % -- Density,2 (sigma-theta)
- % SO, FINAL PROCESSED NAMES (total of 2 per original file) WILL BE:
- % BStrait14xxxCF05and15ACTMLDB.asc
- % BStrait14xxxCF05and15ACTMLDB.hdr
- % where xxx = No. of cast (e.g., 001, 002, ..., 025, 026, 027, ..., 211, 212, etc)

BERING STRAIT 2014 CTD LINES

A total of 13 CTD lines were run on the cruise, far more than planned in this short cruise. We were able to accomplish so many stations due to the efficiency and speed of ship and deck operations during the CTD work, and due to the great assistance from and preparedness of the ship's crew, which allowed us to start CTD operations immediately after mooring work.

Preliminary sections were plotted by C Peralta-Ferriz from the corrected data. The plots below give all 13 sections on the same scales, presented in order of data acquisition, and then the DL lines again with a different set of scales.

Various repeat stations were run during the cruise, after intervals of hours and of days. It is of particular interest that the Bering Strait line was run under northward wind conditions at the start of the cruise and under weak southward wind conditions at the conclusion of the cruise. In this second case, however the flow was still strongly northward. Remarkable on the strait sections is a trapped eddy near the Diomede islands, which is present in both crossings. Note the second crossing of the strait was done with half the station spacing of the original run.

Overall, it is interesting to note the change in stratification, being mostly temperature dominated in the north, to being determined by both temperature and salinity change in the south. It appears that at the time of this cruise, the fresh Alaskan Coastal waters were less extensive than in previous years, possibly due to the earliness of the season, or due to mixing. **ACTION ITEM: Investigate.**

Also noteworthy in these data are the relationships between fluorescence, oxygen and turbidity, with suggestions of different ages of blooms, and possible fall out of blooms to the benthos. **ACTION ITEM: Investigate.**Oxygen values are calculated by Seabird software and are reported here in % saturation, with highest values being over 170%. Note we have no bottle samples with which to verify these data. **ACTION ITEM: Investigate.**

Remarkable spatial variability in water properties was found on the repeat DL lines just north of the Diomede Islands. It will be informative to consider these data in light of prior data and the underway temperature, salinity and ADCP data recorded during the cruise. Note also that several of the casts ion this line shows almost homogeneous water columns, suggestive of very strong vertical mixing. **ACTION ITEM: Investigate.**

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report - 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report - 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report – 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report – 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report – 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report - 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report – 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report – 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report – 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report - 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report - 13th Dec 2014

Woodgate et al 2014 Bering Strait 2014 Norseman II Cruise report – 13th Dec 2014

BERING STRAIT 2014 UNDERWAY DATA REPORT – Woodgate (UW)

Underway CTD, ADCP and some meteorological data were collected during the cruise using the Norseman II's ship-based systems.

ADCP: This year, as last year, we collected data from the Norseman II's Teledyne RD Instruments 300kHz Workhorse Mariner ADCP (SN 19355), which is equipped with high accuracy bottom tracking. The ADCP is mounted 3m below the water line. This system was operational for the cruise, running with 4m bins. The following file types are available for processing (file information copied from http://po.msrc.sunysb.edu/SBI/Healy_ADCPs.htm)

- *.ENR raw binary ADCP data which contains every ping
- *.ENS Binary ADCP data after the data has been preliminarily screened for backscatter and correlation
- *.ENX Binary ADCP data after screening and rotation to earth coordinates
- *.STA Binary ADCP ensemble data that has been averaged into short term averages
- *.LTA Binary ADCP ensemble data that has been averaged into long term averages
- *.N1R Raw NMEA ASCII data from the primary navigation source
- *.N2R Raw NMEA ASCII data from the secondary navigation source, if available, and which should include Ashtech heading data
- *.NMS Binary screened and averaged navigation data
- *.VMO This ASCII file is a copy of the *.ini options file that was used during the data collection
- *.LOG ASCII file containing a log of any errors the ADCP detected during the session

Preliminary data plots will be added to this report once available. Action item: Process ADCP data.

MET DATA: Meteorological data (including wind speed and direction, air temperature, humidity and pressure) were recorded every 15seconds with position, and course, during the cruise. **ACTION ITEM: Check position used for met sensors.** A preliminary plot of these data is given below. No data quality control has yet been applied to these data. Note the high wind speeds (10-20knots) for most of the cruise, with the wind turning from northward to southward on JD 186 (5th July 2014). **ACTION ITEM: Check wind direction is corrected for magnetic declination.** Relative humidity is high, consistent with the dominantly foggy conditions. While air temperature values are broadly consistent with a human assessment of the temperature, there are many curious peaks in the record, with changes often coincident with changes in the ship's course. **ACTION ITEM: Check air temperature record to ensure it is not being contaminated with warm air from the ship.**

UNDERWAY TEMPERATURE AND CONDUCTIVITY DATA: The Norseman II used an Seabird SBE21 temperature conductivity sensor mounted 3.4m below the water line (slightly to port of the ship's ADCP, in the center of the ship) to collect underway data every 10s throughout the cruise, also logging position information.

Between the end of the NBS line and the end of the MBS line, the SBE21 was not collecting data. The cause of this is assumed to have been a voltage spike from the winch, which tripped the power supply to the SBE21. The SBE21 is on a UPS (Uninterrupted Power Supply), which presumably ran on battery power for some time before failing. **ACTION ITEM: Investigate a monitoring system of this system, for example making it an hourly part of the CTD driver's duties.**

Preliminary plots of the underway temperature and salinity data are given below. Salinity data are obtained from SBEData processing (values 1e-3psu fresher than the usual data conversion).

The typical pattern of waters being warmer and fresher near the Alaskan coast is evident in these data. However, in stark comparison to last year (which recorded salinities of 20psu), the lowest underway salinities recorded were ~ 30psu (in the strait, and off Point Hope). Note that warmer waters are also found in the north of the study area, as per last year. It is very important to remember when interpreting these data, that they are not synoptic, as is evidenced by the plots of the various crossings of the Bering Strait also shown below.

BERING STRAIT 2014 METEOROLOGICAL DATA

BERING STRAIT 2014 UNDERWAY TEMPERATURE SALINITY DATA

BERING STRAIT 2014 UNDERWAY TEMPERATURE SALINITY DATA (continued)

Whole cruise

Detail of the Bering Strait region (for the entire cruise) (Note the warming in the strait region during the cruise – compare black temperature tracks during mooring operations with the warmer NBS and post MBSn crossings.

BERING STRAIT 2014 TARGET CTD POSITIONS

The following lists give the positions of the CTD lines taken in US waters in the Bering Strait region in the last decade as part of the Bering Strait mooring cruises. Stations taken on this 2014 cruise are included in the full event log later in this cruise report.

```
%_____
% Stations for BStrait Mooring Cruise 2014 Norseman II
2
% US-Russian convention line is at 168deg 58.7'W.
% All stations in this file are in US waters.
% (Let me know if any points are too close to border for you.)
2
% Time estimates are based on the 2013 Norseman II cruise.
£_____
2
&_____
% ***** MOORING POSITIONS *****
% In likely order of servicing, i.e.,
% - recoveries from east to west in strait, then northern site;
% - deployments northernsite, the west to east in strait.
% == 3 moorings to recover
% == 3 moorings to deploy
§_____
% RECOVERIES of moorings deployed in 2013

        %NAME
        Lat(N)
        Long (W)
        Water
        Top

        %
        deg min
        deg min
        depth
        Float

        % A4-13
        65
        44.75
        168
        15.75
        49m
        17m

        % A2-13
        65
        46.86
        168
        34.05
        56m
        17m

% A3−13
             66 19.62
                              168 57.06
                                                58m
                                                        17m
8-----
% DEPLOYMENTS for this 2014 cruise
§_____
% Target same as 2012 positions.

      % NAME
      Lat(N)
      Long (W)
      Water

      %
      deg min
      deg min
      depth

      % A3-14
      66
      19.61
      168
      57.05
      58m

      % A2-14
      65
      46.86
      168
      34.07
      56m

      % A4-14
      65
      44.75
      168
      15.77
      49m

                                           Water
                                           depth
2
§_____
% INTERMOORING DISTANCES
8-----
% A2 - A4 ~ 8nm
8_____
% To A3 from
8_____
   A2 - 34nm
8
% A4 - 39nm
8_____
```

```
% To Nome from
8_____
00
 A4 - 120nm
% CS1 - 200-220nm
<u>&______</u>
2
% ***** HISTORIC CTD SECTIONS *****
%_____
% There are 11 historic CTD lines here.
% We will not have time for all of these, but
% we will likely do a subset. I've included
% them all, so you have the positions in advance.
% If operations/science dictate, then there
% might be different lines proposed while at sea.
2
% Naming is based on historic data.
% "+net" also refers to historic operations and
% is not relevant for this cruise.
% "no bottles" refers to historic operations and
% is not relevant for this cruise. (No bottles
% will be taken on any CTD casts of the 2014 cruise.)
% Known Hazards are indicated.
8
% Stay a safe distance (300m?) from all deployed
% moorings.
8
% Except for around moorings or for mooring work,
% within 200m is ok for positions.
%
% BS = Bering Strait Line (US portion)
% - 15 stations
% - station spacing generally ~ 2nm
% Distances: - BS11-BS22 21.7nm
% - BS22-BS24 3.1nm
% Total length 24.8nm
8--
% Time from Norseman II, 6 hrs running W, 5 hrs running E
% Time from Khromov 10.5hrs
%_____
% Lat (N) Long (W) Lat (N)
                         Long (W)
                                   Name
               deg min deg min
8
 65.805 168.933 65 48.31 168 55.96 % BS11
 65.788 168.860 65 47.26 168 51.62 % BS12
 65.772 168.794 65 46.33 168 47.64 % BS13
 65.755 168.721 65 45.28 168 43.29 % BS14
 65.739 168.663 65 44.35 168 39.80 % BS15
 65.722 168.591 65 43.29 168 35.46 % BS16 + net
 65.704 168.521 65 42.23 168 31.28 % BS17
 65.695 168 486 65 41.70 168 29.16 % BS17S
 65.686 168.449 65 41.18 168 26.94 % BS18
 65.672 168.391 65 40.35 168 23.44 % BS19
```

```
65.655 168.318 65 39.29 168 19.09 % BS20
 65.642 168.250 65 38.53 168 14.97 % BS21
 65.625 168.177 65 37.48 168 10.63 % BS22 + net
 65.599 168.161 65 35.96 168 9.66 % BS23
 65.582 168.117 65 34.91 168 7.00 % BS24
8
%
% AL = A3 Line (US portion)
% Hazards on this line:
% == First station on this line is at mooring A3-14, so exact
\% position needs to be altered to be a safe distance (300m?)
% from mooring A3-14 site.
$_____
% - 13 stations including cast at A3mooring site
% - station spacing ~ 1.9nm
% Distance: - A3 to AL24 = 22.2nm
8 --
% Time from Norseman II ~5.5hrs
% Time from Khromov ~9hrs
o<u>c</u>_____
% Lat (N) Long (W) Lat (N) Long (W)
                                     Name
8
                deg min
                          deg min
  66.327 168.951 66 19.61 168 57.05 % A3-14
% *** Adjust this first position to be safe distance (300m?) from A3-14
  66.340168.8956620.3916853.71% AL1366.352168.8236621.0916849.40% AL14
  66.363 168.752 66 21.80 168 45.09 % AL15
  66.375168.6806622.5116840.78% AL1666.387168.6086623.2116836.47% AL17 + net
  66.399 168.536 66 23.92 168 32.16 % AL18
  66.410 168.464 66 24.63 168 27.84 % AL19
  66.422 168.392 66 25.33 168 23.53 % AL20
  66.434 168.320 66 26.04 168 19.22 % AL21
  66.446 168.249 66 26.75 168 14.91 % AL22 + net
66.458 168.177 66 27.45 168 10.60 % AL23
  66.469 168.105 66 28.16 168 6.29 % AL24
8
%
% CS = Cape Serdtse Kamen to Point Hope Line (US portion)
8_____
% Hazards on this line:
% == Final station CS19 is shallow. Check on
% modern charts to see if deep enough for Norseman II.
% (this station was too shallow for the Khromov, but
% was ok for the Norseman II in 2013).
∞
% - 16 or 17 stations
% - station spacing ~ 5nm in the central Chukchi,
              ~ 2.2nm near the coast
8
% Distances: - CS10US to CS18 60.8nm
% - CS18 to CS19 2.2nm
```

```
%___
% Time from Norseman II (toCS19) ~ 10.5 hrs
% Time from Khromov (toCS18) ~12hrs
0,6_____
00
    Lat (N)
             Long (W)
                          Name
    deg min
00
             deg min
0 0
   67 38.1 168
                   56.0
                         % CS10US + net
0 0
       41.7
             168
                  48.1
                         % CS10.5 - no bottles
    67
0 0 67 41.7 168 40.1 % CS10
0 0 67 45.3 168 39.9 % CS11
0 0 67 48.9 168 29.4
                         % CS11.5 - no bottles
       52.5 168
                         % CS12 + net
0 0
                  18.8
    67
0 0
       55.9 168
                   9.1
                         % CS12.5 - no bottles
   67
0 0
   67
       59.3 167
                  59.4
                         % CS13
                  49.7 % CS13.5 - no bottles
39.9 % CS14 + net
        2.7
              167
0 0
   68
0 0 68
        6.1 167
        9.1 167
                         % CS14.5 - no bottles
0 0
   68
                  30.7
   68 12.1 167
                         % CS15
0 0
                  21.4
                         % CS15.5 - no bottles
0 0
   68 13.6 167
                  16.8
       15.0 167
                  12.2
0 0
   68
                         % CS16
                   7.6 % CS16.5 - no bottles
0 0
   68 16.6 167
0 0 68 18.0 167
                   2.9
                         % CS17 + net
                  57.6
   68 18.9 166
0 0
                          % CS18
                       % CS19 *** SHALLOW **
0 0 68 19.9 166 52.3
9
              CS19 too shallow for Khromov.
9
%
% DL = Diomede Line (US only, 1nm east of border)
%_____
% This line is to map eddying area north of the Diomedes
% - 19 stations
% - station spacing ~ 1nm in South,
00
                ~ 2.5nm in north
% Distance: - DL1 to DL19 28.7nm
° – –
% Time from Norseman II - 5.5 hrs running N; 9hrs running S
% Time from Khromov to DL19 ~10hrs
06_____
9
    Lat (N)
              Long (W)
                         Name
90
    deg min
              deg min
0 0 65
      49.28
              168
                  56.2 % DL1
0 0 65
      50.26 168 56.2 % DL2
0 0 65 51.23 168 56.2 % DL3
0 0 65
      52.21
             168 56.2 % DL4 + net
0 0 65
              168 56.2 % DL5 - no bottles
      53.18
0 0 65
       54.15
              168 56.2 % DL6
                   56.2 % DL7 - no bottles
0 0 65
       55.13
               168
      56.10 168 56.2 % DL8
0 0 65
0 0 65
      57.08
              168 56.2 % DL9 - no bottles
             168 56.2 % DL10
0 0 65
      58.05
0 0 65
      59.03
              168 56.2 % DL11- no bottles
       0.00 168 56.2 % DL12
2.55 168 56.2 % DL13-
0 0 66
0 0 66
               168 56.2 % DL13- no bottles
        5.10 168 56.2 % DL14
0 0 66
```

0 0 66 7.65 168 56.2 % DL15- no bottles 0 0 66 10.19 168 56.2 % DL16 0 0 66 168 56.2 % DL17- no bottles 12.74 0 0 66 15.29 168 56.2 % DL18 168 56.2 % DL19- no bottles 0 0 66 17.84 8 % % DL A and B lines (Diomede A and B lines) % These lines, with DL, form a grid to map % eddying N of the Diomedes. % - each line 12 stations % - station spacing ~ 1nm % Distances: - each line ~ 11nm 8--% Estimate for NorsmanII for each line ~3.5hrs % Time from Khromov for each line ~5hrs §_____ 9 Lat (N) Long (W) Name 90 deg min deg min % Northbound leg 0 0 65 49.30 168 52.2 % DLa 1 0 0 65 50.27 168 52.2 % DLa 2
 168
 52.2
 6
 Dia
 2

 168
 52.2
 %
 DLa
 3

 168
 52.2
 %
 DLa
 4
 65 0 0 51.25 0 0 65 52.22 168 52.2 % DLa 5 168 52.2 % DLa 6 0 0 65 53.19 0 0 65 54.16 0 0 65 55.14 168 52.2 % DLa 7

 168
 52.2
 % DLa
 8

 168
 52.2
 % DLa
 9

 168
 52.2
 % DLa
 10

 168
 52.2
 % DLa
 10

 168
 52.2
 % DLa
 11

 168
 52.2
 % DLa
 11

 168
 52.2
 % DLa
 12

 56.11 0 0 65 0 0 65 57.08 0 0 65 58.05 0 0 65 59.03 0 0 66 0.00 % Southbound leg 168 48.2 % DLb 12 168 48.2 % DLb 11 0 0 66 0.00 0 0 65 59.03
 168
 48.2
 % DLb
 10

 168
 48.2
 % DLb
 9
 0 0 65 58.05 0 0 65 57.08 0 0 65 56.11 168 48.2 % DLb 8 48.2 % DLb 7 0 0 65 55.14 168 168 0 0 65 54.16 48.2 % DLb 6 168 48.2 % DLb 5 0 0 65 53.19 168 48.2 % DLb 4 0 0 65 52.22 0 0 65 51.25 48.2 % DLb 3 168 0 0 65 50.27 168 48.2 % DLb 2 0 0 65 49.30 168 48.2 % DLb 1 8 8 % AS = from AL to CS Line % Across-topography line linking Al line with CS % - 20 stations (counting first of CS line)

% - station spacing AS1-7 at ~ 4nm spacing. 8 AS7-14 at 2nm spacing, 8 8 A14 to end 4nm % Distances: - AS1 to CS10 64.7nm 8--% Time from Khromov (12casts, odds+2&18) ~11hrs % Estimate for NorsmanII 20 casts ~ 12hrs % Estimate for Khromov 20 casts ~ 14hrs ٥<u>,</u> Long (W) deg min Lat (N) deg min Name 00 90

 0
 0
 66
 41.47
 167
 38.86
 % AS 1

 0
 0
 66
 45.01
 167
 43.78
 % AS 2-no bottles

 0
 0
 66
 48.55
 167
 48.70
 % AS 3

 0
 0
 66
 52.09
 167
 53.62
 % AS 4-no bottles

 0
 0
 66
 55.63
 167
 58.55
 % AS 5

 0
 0
 66
 59.17
 168
 3.47
 % AS 6-no bottles

 0
 0
 67
 2.71
 168
 8.39
 % AS 7

 00 (2nm spacing over slope) 0 0 67 4.48 168 10.85 % AS 8-no bottles 0 0 67 6.25 168 13.31 % AS 9 0 0 67 8.02 168 15.77 % AS 10-no bottles

 0
 0
 67
 9.78
 168
 18.23
 % AS 11

 0
 0
 67
 11.55
 168
 20.69
 % AS 12-no bottles

 0
 0
 67
 13.32
 168
 23.15
 % AS 13

 0
 0
 67
 16.86
 168
 28.07
 % AS 14

 9 (back to 4nm spacing)

 0
 0
 67
 20.40
 168
 32.99
 % AS 15-no bottles

 0
 0
 67
 23.94
 168
 37.92
 % AS 16

 0
 0
 67
 27.48
 168
 42.84
 % AS 17-no bottles

 168 47.76 % AS 18 168 52.68 % AS 19-no bottles 0 0 67 31.02 0 0 67 34.56 0 0 67 38.10 168 56.00 % CS10US 90 9 % LIS = Cape Lisburne Line % - 17 stations (including first of CCL line) % - station spacing ~ 2nm near coast, % ~ 3nm and ~ 5nm away from coast % Distances: - LIS1 to CCL22 57.2nm 8--% Time from Norseman II, ~ 10hrs % Time from Khromov ~11hrs 8-----Long (W) 9 Lat (N) Name deg min 90 deg min

 0
 0
 68
 54.40
 166
 19.80
 % LIS 1 + net

 0
 0
 68
 54.80
 166
 25.15
 % LIS 2

 0
 0
 68
 55.20
 166
 30.51
 % LIS 3

 0
 0
 68
 55.80
 166
 38.54
 % LIS 4

 0
 0
 68
 56.40
 166
 46.57
 % LIS 5

```
0 0
              57.00
                         166 54.60 % LIS 6 + net
       68
0 0 68 57.60 167 1.95 % LIS 6.5 - no bottles

0 0 68 58.20 167 9.30 % LIS 7

0 0 68 58.80 167 16.65 % LIS 7.5 - no bottles

0 0 68 59.40 167 24.00 % LIS 8

0 0 69 0.60 167 38.70 % LIS 9

0 0 69 1.80 167 53.40 % LIS 10 + net

0 0 69 1.35 168 7.95 % LIS 11

0 0 69 0.90 168 22.50 % LIS 12

0 0 69 0.45 168 37.05 % LIS 13

0 0 69 0.23 168 46.62 % LIS 14n + net

0 0 69 0.00 168 56.00 % CCL22n % was 56.2
0 0
      68 57.60
                           167
                                     1.95 % LIS 6.5 - no bottles
8
8
% CCL = Chukchi Convention Line
% Hazards on this line:
\% == First station on this line is the same as last station
% included in the LIS line above. It does not need to be
% repeated.
% == Last station on this line is at mooring A3-14, so exact
% position needs to be altered to be a safe distance (300m?)
% from mooring A3-14 site.
% == There are 2 JAMSTEC moorings ~ 3nm east of station
% CCL16 on this line. Those positions are:
% SCH13 68 2.002N 168 50.028W
% SCH13w 68 3.006N 168 50.003W
8-----
% Line running from northern most point
% due south, ~ 1nm US side of conventionline
% - 20 stations (counting arriving at A3-14)
% - station spacing ~ 10nm until CCL8,
00
          then reducing to ~5nm and ~2.5nm
% Distances: - CCL22 to A3-13 ~ 161nm
8--
% Time from Norseman II, 21.5hrs
% Time from Khromov ~26hrs
90
          Lat (N)
                              Long (W)
                                                 Name
         deg min
                             deg min
90

        %
        deg
        min
        deg
        min

        0
        0
        69
        0.0
        168
        56.0
        % CCL22

        0
        0
        68
        50.0
        168
        56.0
        % CCL21

        0
        0
        68
        40.0
        168
        56.0
        % CCL20

        0
        0
        68
        30.0
        168
        56.0
        % CCL19

0 0
        68
                 20.0
                              168 56.0
                                              % CCL18 + Net
      6810.016856.06800.016856.06750.016856.06738.116856.0
0 0
                                               % CCL17
0 0
                                              % CCL16
0 0
                                              % CCL15
0 0
                                                % CCL14 (same as CS10US) + Net + Prod
00
         67 30.0
67 20.0
67 10.0
0 0
                              168 56.0
                                              % CCL13
0 0
                              168 56.0
                                                % CCL12
0 0
                               168 56.0
                                                 % CCL11
```

```
0 0
    67 00.0 168 56.0 % CCL10 + Net
0 0
          50.0
                   168 56.0 % CCL9
      66
     66
          40.0
0 0
                   168 56.0 % CCL8
00
      - spacing now 5nm
0 0
   66
           35.0 168 56.0
                             % CCL7
    66
           30.0
0 0
                   168 56.0
                             % CCL6
0 0
     66
           25.0
                   168 56.0
                               % CCL5
8
          - spacing now 2.5nm
0 0
           22.3 168 56.0
                               % CCL4
      66
                   168 57.05 % A3-13
0 0
     66
         19.61
% *** Adjust this position to be safe distance (300m?) from A3-13
9
2
% NBS - North Bering Strait line
% Hazards on this line:
% == Section crosses shallow waters.
% Beware of shallows from NBS9 and eastwards.
% (Helix diverted N to avoid shallows between
% stations NBS10 and NBS11)
% == Consider terminating line at NBS9
8-----
% Another cross strait line, run previously
% at lower resolution (i.e. without the 0.5 stations).
% - stations 9 (NBS1-9) to 16 (NBS1-9 with 0.5s)
   to 21 (full section, including shallows).
8
% - station spacing (with 0.5s) ~ 1.7nm
% Distance: - NBS1-9 25.8nm
          - NBS1-14 44.1nm
00
%___
% Time from Helix to NBS9, 9 casts ~5.5hrs
% - Estimate for Norseman II to NBS9, 9 casts, 6hrs
% - Estimate for Norseman II to NBS9, 16 casts, 7.5hrs
% - Estimate Khromov to NBS9, 9 casts ~6.5hrs
% - Estimate Khromo to NBS9, 16 casts ~8hrs
% Time from Helix to NBS14, 14 casts ~8.5hrs
% - Estimate for Norseman II to NBS14, 14 casts, 9hrs
% - Esimate for Norseman II to NSB14, 21 casts, 10.5hrs
% - Estimate Khromov to NBS14, 14 casts ~10hrs
% - Estimate Khromov to NBS14, 21 casts ~13hrs
0,6_____
8
      Lat (N)
                   Long (W)
                               Name
      deg min
                   deq
8
                        min
0 0
     66
          0.0
                   168 56.0
                               % NBS1 % was 58.1
0 0
    66
            0.0
                   168 53.0
                             % NBS1.5
          0.0
           0.0 168 49.9
0.0 168 45.8
                              % NBS2
0 0
    66
0 0 66
                              % NBS2.5
0 0
    66
           0.0
                   168 41.6
                              % NBS3
           0.0
                 168 37.4
                              % NBS3.5
0 0
    66
0 0
   66
           0.0
                   168 33.2
                             % NBS4

      66
      0.0
      100
      20.1

      66
      0.0
      168
      25.0

      66
      0.0
      168
      20.7

0 0
                             % NBS4.5
                              % NBS5
0 0
0 0
                             % NBS5.5
```

```
      100
      16.4
      % NBS6

      00
      66
      0.0
      168
      12.4
      % NBS6.5

      00
      66
      0.0
      168
      8.4
      % NBS7

      00
      66
      0.0
      168
      4.2
      % NBS7.5

      00
      66
      0.0
      168
      0.0
      0

      00
      66
      0.0
      168
      0.0
      0

             660.01680.0% NBS8- 34m water660.016755.1% NBS9- 20m water
0 0
% (consider terminating line here)
0 0
                             0.0 167 52.0 % NBS10 - 12m water
              66
% (Helix diverted N to avoid shallows between these stations)

      0
      66
      0.0
      167
      40.1
      % NBS11
      -
      15m water

      0
      0
      66
      0.0
      167
      29.1
      % NBS12
      -
      18m water

      0
      0
      66
      0.0
      167
      18.1
      % NBS13
      -
      13m water

0 0
             66
                             0.0
                                                167 10.2 % NBS14 - 10m water
8
2
 % MBSn = Mid Bering Strait line (new)
% Just north of the Bering Strait line
 % - 14 stations
 % - station spacing 1.7nm, less near coast
% Distance: - 21.0nm total
8---
 % Time from Helix (8casts only) ~2.5hrs
% - Estimate Norseman II (8 casts only) ~ 4hrs
 % - Estimate Norseman II (14 casts) ~ 6hrs
 % - Estimate Khromov (8casts only)~5.5hrs
 % - Estimate Khromov (14casts) ~7hrs
8-----

      %
      Lat (N)
      Long (W)
      Name

      %
      deg min
      deg min

      0
      0
      65
      52.1
      168
      56.0
      % MBSn1 % was 57.0

      0
      0
      65
      52.0
      168
      52.5
      % MBSn1.5

      0
      0
      65
      51.9
      168
      49.1
      % MBSn2

      0
      0
      65
      51.8
      169
      45.0
      0
      0

      0
      0
      05
      51.5
      100
      49.1
      % MBSn2

      0
      0
      65
      51.8
      168
      45.0
      % MBSn2.5

      0
      0
      65
      51.7
      168
      40.9
      % MBSn3

      0
      0
      65
      51.6
      168
      36.4
      % MBSn3.5

      0
      0
      65
      51.5
      168
      31.9
      % MBSn4 % was 51.6

      0
      0
      65
      51.4
      168
      27.5
      % MBSn4.5

      0
      0
      65
      51.3
      168
      23.0
      % MBSn5 % was 51.4

      0
      0
      65
      51.2
      168
      18.5
      % MBSn5.5

      0
      0
      65
      51.1
      168
      13.9
      % MBSn6

      0
      0
      65
      51.1
      168
      10.4
      % MBSn6.5

      0
      0
      65
      51.0
      168
      6.9
      % MBSn7

      0
      0
      65
      50.9
      168
      5.0
      % MBSn8

8
 9
 %-----
 % NEW LINES ADDED DURING CRUISE
 2
 §_____
 % HIGHER RESOLUTION BSTRAIT LINE
```

§_____ % As per the previous BStrait line, but adding in % extra half stations all across the strait 8 90 Lat(N) Lon(W) 00 Deg Min Deg Min 65.805 168.933 65 48.31 168 55.96% BS11 168.897 47.79168 53.79 % 65.797 65 BS11J Jim 65.788 168.86 65 47.26168 51.62 % BS12

 168.827
 65
 46.8
 168
 49.63 %
 BS12AJ

 168.794
 65
 46.33
 168
 47.64 %
 BS13

 160.750
 65
 45.01
 160
 45.47 %
 BS13

 65.780 AJ

 168.794
 65
 40.33100

 168.758
 65
 45.81168
 45.47%

 168.758
 65
 45.28168
 43.29%

 65.772 65.764 BS13Z Zack 65.755 BS14 168.692 65 44.82168 41.55 % 65.747 BS14J Jorin 168.663 65 44.35168 39.8 % BS15 65.739 168.6276543.8216837.638BS15J168.5916543.2916835.468BS16 65.731 Jack 65.722 65.713 168.556 65 42.76168 33.37 % BS16J Jim 168.5216542.2316831.28%BS17168.4866541.716829.16%BS17S 65.704 65.695 Scotty 168.449 65 41.18168 26.94 % 65.686 BS18 BS18J

 168.42
 65
 40.77100

 168.391
 65
 40.35168
 23.44%

 7
 39.82168
 21.27%

 168.42 65 65.679 Joanne 65.672 BS19 65.664 BS19H Harry 39.29168 19.09% 65.655 168.318 65 BS20 168.284 65 38.91168 17.03% 65.649 BS20J John 168.256538.5316814.97 %168.2146538.0116812.8 % BS21 BS21A 65.642 168.25 Andy 65.634 65.625 168.177 65 37.48168 10.63 % BS22 34.91168 7 % 65.599 168.161 65 BS23 168.117 65 BS24 65.582 90 % New SBS (South Bering Strait) line % Starts from BS24 and runs SE back across the % ACC. % --- Length to SBS2 to SBS8 = 13.4nm, 7 stations 90 % Lat (N) Lon (W) %Deg Min Deg Min 65 34.91 168 7.00 % SBS1 (same as BS24) 65 33.93 168 11.85 % SBS2 65 32.95 168 16.70 % SBS3 65 168 21.55 % SBS4 31.96 65 30.98 168 26.40 % SBS5 65 30.00 168 31.26 % SBS6 168 36.11 % SBS7 65 29.02 65 28.03 168 40.96% SBS8 65 27.05 168 45.81 % SBS9 (not taken in 2014) 65 26.07 168 50.66% SBS10 (not taken in 2014) 55.51 % SBS11 (not taken in 2014) % 65 25.09 168

REFERENCES

- Aagaard, K., and E. C. Carmack (1989), The role of sea ice and other fresh water in the Arctic circulation, *J. Geophys. Res.*, *94*(C10), 14485-14498.
- De Boer, A. M., and D. Nof (2004), The Bering Strait's grip on the northern hemisphere climate, *Deep-Sea Res., Part I*, *51*(10), 1347-1366, doi: 10.1016/j.dsr.2004.05.003.
- Jakobsson, M., C.Norman, J.Woodward, R. MacNab, and B.Coakley (2000), New grid of Arctic bathymetry aids scientists and map makers, *Eos Trans.*, *81*(9), 89, 93, 96.
- Macdonald, R. W., E. C. Carmack, F. A. McLaughlin, K. K. Falkner, and J. H. Swift (1999), Connections among ice, runoff and atmospheric forcing in the Beaufort Gyre, *Geophys. Res. Lett.*, *26*(15), 2223-2226.
- Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky (2006), Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean, *Geophys. Res. Lett.*, 33, L08605, doi: 10.1029/2005GL025624.
- Travers, C. S. (2012), Quantifying Sea-Ice Volume Flux using Moored Instrumentation in the Bering Strait, 85 pp, University of Washington, available at psc.apl.washington.edu/HLD.
- Wadley, M. R., and G. R. Bigg (2002), Impact of flow through the Canadian Archipelago and Bering Strait on the North Atlantic and Arctic circulation: an ocean modelling study, *Quarterly Journal of* the Royal Meteorological Society, 128(585), 2187-2203.
- Walsh, J. J., et al. (1989), Carbon and nitrogen cycling within the Bering/Chukchi Seas: Source regions for organic matter effecting AOU demands of the Arctic Ocean, *Prog. Oceanogr.*, 22(4), 277-259, doi: 10.1016/0079-661(89)90006-2.
- Woodgate, R. A. (2003), Alpha Helix HX274 Cruise Report, Bering Strait Mooring Cruise June-July 2003, available at <u>http://psc.apl.washington.edu/BeringStrait.html</u>, University of Washington, Seattle.
- Woodgate, R. A. (2004), Alpha Helix HX290 Cruise Report, Bering Strait Mooring Cruise August-September 2004, available at <u>http://psc.apl.washington.edu/BeringStrait.html</u>, University of Washington, Seattle.
- Woodgate, R. A., and K. Aagaard (2005), Revising the Bering Strait freshwater flux into the Arctic Ocean, *Geophys. Res. Lett.*, *32*(2), L02602, doi: 10.1029/2004GL021747.
- Woodgate, R. A., and RUSALCA11ScienceTeam (2011), RUSALCA Bering Strait AON 2011 Mooring Cruise Report, 58 pp, University of Washington, Seattle, USA, available at http://psc.apl.washington.edu/BeringStrait.html.
- Woodgate, R. A., and RUSALCA12ScienceTeam (2012), RUSALCA Bering Strait AON 2012 Mooring Cruise Report 77 pp, University of Washington, available at psc.apl.washington.edu/HLD.
- Woodgate, R. A., and BeringStrait2013ScienceTeam (2013), Bering Strait Norseman II 2013 Mooring Cruise Report, 59 pp, University of Washington, available at psc.apl.washington.edu/HLD.
- Woodgate, R. A., K. Aagaard, and T. J. Weingartner (2005a), A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990-1991, *Deep-Sea Res., Part II*, *52*(24-26), 3116-3149, doi: 10.1016/j.dsr2.2005.10.016.
- Woodgate, R. A., K. Aagaard, and T. J. Weingartner (2005b), Monthly temperature, salinity, and transport variability of the Bering Strait throughflow, *Geophys. Res. Lett.*, *32*(4), L04601, doi: 10.1029/2004GL021880.
- Woodgate, R. A., K. Aagaard, and T. J. Weingartner (2006), Interannual Changes in the Bering Strait Fluxes of Volume, Heat and Freshwater between 1991 and 2004, *Geophys. Res. Lett.*, 33, L15609, doi: 10.1029/2006GL026931.
- Woodgate, R. A., T. J. Weingartner, and R. W. Lindsay (2010), The 2007 Bering Strait Oceanic Heat Flux and anomalous Arctic Sea-ice Retreat, *Geophys. Res. Lett.*, 37, L01602, doi: 10.1029/2009GL041621.
- Woodgate, R. A., T. J. Weingartner, and R. Lindsay (2012), Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column, *Geophys. Res. Lett.*, *39*(24), 6, doi: 10.1029/2012gl054092.

% Bering Strait 2014 NORSEMAN2 log CTD

%example from	n 2013													
%Date	Time	1 Cast NO	Down	Depth (m)	Lat (deg)	Lat (min)	Lon (deg)	Lon(min)	%	StationID	Windspeed	Winddir	Operator	Comments
20130704	0627	1 .	<mark>1</mark> 1	52.5	65	5 21.69	90 167	53.450	%	testcast	14.4	18:	2 ACPF	Test cast en route to BS line
20130704	0635	1 .	1 2	52.5	65	5 21.00	00 167	53.650	%		5.7	5	1 ACPF	1, 5 ans 6 are leaking
20130704	0713	1	<mark>2</mark> 1	42.2	65	5 25.10	00 167	59.270	%	testcast2	15.6	5 19 [.]	7 ACPF	This is to test bottles - All bottles OK
20130704	0721	1	<mark>2</mark> 2	42.2	6	5 25.17	75 167	59.260	%				ACPF	
0/D-1-	-			D	1 - 1 (1 1		(•	Chatting ID	10 C C C C C C C C C C		•	C eremonda
%Date	lime	1 Cast NO	Down	Deptn (m)	Lat (deg)	Lat (min)	Lon (deg)	Lon(min)	%	StationID	winaspeea	winddir	Operator	Comments
%Flease III III	ali uala iu	no for the he		et the event	and one lin	a for the a	ad		70 0/					
% There should		the formet up	ginning c		and one in		iu		70 0/					
%Date is Givin	and has t	he format bl	/yymmuu mm						70 0/					
%Tv-Tvpe: 1-(r = 10111at m	nnin od cast y	,					70 %	THIS YEAR WE ONLY HAV	E TYPE 1			
%# Number is	consecuti	ve for that e	vent type	•					%	THIS TEAK WE ONET THAT				Ň
%In/out (I/O):	1=ln / 2=0	Ve for that e Dut	vent type	-					%					
%Den=waterd	enth(m) fr	om Furuno i	readout	hy CTD whi	rh is denth	helow keel	keel is 3m (10ft)	70					
%LatD and Lat	M are Lati	tude Degree	es and Mi	inute and ar	re nositive l	N NORM	, кесть этт (1011)	%					
%LonD and Lo	nMare Io	ngitude Deg	rees and	Min and an	e nositive V	v			%					
%St is the nam	e of the s	tation (Line I	ID then st	tation numb	er)	•			%					
% SS = CTD op	erator est	imate of sea	state (Be	aufort Scal	e)									
%WSp=wind s	peed in m	/s: WD=Win	d directio	on from brid	lge									
%Op=CTD ope	rator	-,			0-									
% when 3 lines	for NET.	dep indicate	s wire ou	it for net										
%Fill in any co	mments if	needed.							%					
,											Knots	deg (0=N)		
%Date	Time	1 Cast NO	Down	Depth (m)	Lat (deg)	Lat (min)	Lon (deg)	Lon(min)	%	StationID	Windspeed	Winddir	Operator	Comments
20140630	2035	1	1 1	17.3	64	43.77	74 166	41.009	%	dry test	3.4	21	7 atn	dry test to learn CTD driving
20140630	2045	1	1 2	17.1	. 64	44.85	55 166	43.033	%	dry test	4.6	5 21	4 atn	surface only as pump didn't work
% put in water	, but pum	p didn't com	ne on. Tr	ied several t	things, brou	ight it on b	oard, overwr	ote those te	st, finally	y got pump turned on manually i	n air (saved as	cast 2)		
20140630	2151	1	2 1		64	1	166	5	%	dry test			RJD	final dry test with pump on manually in air
20140630	2155	1	<mark>2</mark> 2		64	1	166	5	%	dry test			RJD	
20140630	2250	1	3 1		64	1	166	5	%	wet test			RJD	try again in water automatically, pump not on
20140630	2251	1	3 2		64	1	166	5	%	wet test			RJD	
20140630	2252	1 .	4 1		64	4 57.25	55 167	,	%	wet test	calm		RJD	stll in water, turned on pumps manually, went to depth
20140630	2259	1 4	4 2	10.7	64	4 57.3	36 167	4.63	%	wet test			RJD	altimeter ok
% Noticed pre-	vious casts	s were with	old cal, u	pdated cals	to 2012									
20140701	43	1	51	17.4	65	5	167	,	%	wet test			ACPF	try again for automatic pump, but didn't work
20140701	46	1	5 2		65	5	167	,	%	wet test			ACPF	
20140701	48	1	<mark>6</mark> 1	17.2	65	5 8.0	05 167	25.67	%	wet test			ACPF	still in water, redo manually, ok
20140701	54	1	<mark>6</mark> 2		65	5	167	,	%	wet test			ACPF	BUT altimeter does not change with depth
% altimeter st	uck at 18n	n (close to ra	ange from	n surface), b	ut didn't ch	ange with	depth - so m	oved altime	ter down	1				
20140701	102	1	7 1	17.1	. 65	5	8 167	25	%	wet test			ACPF	testing lowered altimter - still bad
20140701	103	1	7 2		65	5	167	,	%	wet test			ACPF	
% decide can l	ive with tu	irning pump	on manu	ually, as obv	ious things	don't make	e automatic v	vork - ****	TEST THI	S BACK IN SEATTLE***				
% trying to fix	altimeter	- added extr	a 20lbs w	/eight (in ca	se wasn't s	traight in w	/ater), replug	ged cables						
20140701	1542	1	8 1	44.5	65	5 44.6	53 168	15.16	%	Calcast recovery site A4_13			ACPF	To 45 m. Altimeter reading 99m, winch wo ok to within 2m
20140701	1545	1	82		65	5 44.8	37 168	15.14	%					
20140701	1658	1	9 1	52.9	65	5 46.7	72 168	33.9	%	Cal cast recovery site A2			ACPF	To 54 m. Altimeter ok at surface, then stuck.
20140701	1701	1	92		65	5 46.8	38 168	33.9	%					(Altimeter connectors cleaned pre cast)
% Here we add	ded the tu	rbidity meas	surement	s (Calib as c	of March 11	, 2010) to 1	the table plot	(upper righ	t). There	is no graph of turbidity.				
% We have up	dated xm	lcom file and	d psa files	s to Version	3 (BStrait2	014vers301	hJune2014_v	/3.psa and *	_v3.xmlc	com)				
20140702	102	1 1	0 1	54.3	66	5 19.70	9 168	57.13	%	Cal cast recovery site A3	20.9	18	6 RJD	
20140702	108	1 1	0 2	54.4	66	5 19.91	19 168	57.22	%		14.2	169.	5 RJD	
20140702	1930	1 1	1 1	54.4	66	5 19.63	35 168	56.855	%	Cal cast deployment A3	15.7	20	2 ACPF	
20140702	1935	1 1	1 2	54.4	66	5 19.76	57 168	56.892	%		14.4	19	3 atn	
20140703	105	1 1	2 1	53.2	65	5 46.80	05 168	33.782	%	Cal cast deployment A2	14.8	8 19	2 RJD	
20140703	109	1 1	<mark>2</mark> 2	54.2	65	5 46.95	57 168	33.678	%	Cal cast deployment A2	14.9) 19	2 RJD	

20140703	234	1	13	1	44.9	65	44.72	168	15.207 %	Cal cast deployment A4	18.4	206 RJD	
20140703	237	1	13	2	45	65	44.83	168	15.157 %	Cal cast deployment A4	18.8	196 RJD	
20140703	451	1	14	1	27.9	65	35.025	168	7.447 %	BS24	10.9	168 atn	very fast current
20140703	454	1	14	2	28.5	65	35.122	168	7.685 %	BS24	16.6	152 atn	
20140703	504	1	15	1	30.3	65	36.092	168	9.96 %	BS23	17.4	172 atn	
20140703	506	1	15	2	30.7	65	36.203	168	10.278 %	BS23	18.3	164 atn	
20140703	518	1	16	1	29.5	65	37 484	168	10 622 %	BS22	19	185 atn	
20140703	510	1	16	2	29.9	65	37 580	168	10.689 %	BS22	19.8	189 atn	
20140703	510	1	17	1	20.0	65	20 504	160	14.04.9/	0.522	10.0	105 atn	
20140703	559	1	17	2	40.2	05	20.294	108	14.94 %	B321	19.8	170 dtii	
20140703	541	1	17	2	40.4	05	20.001	108	14.977 %	B321	19.1	177 dtii	
20140703	557	1	18	1	46.4	65	39.271	168	19.001 %	BS20	15.8	190 ath	
20140703	600	1	18	2	46.6	65	39.359	168	19.008 %	BS20	18.4	183 atn	
20140703	618	1	19	1	49.8	65	40.323	168	23.518 %	BS19	17.7	193 atn	
20140703	620	1	19	2	49.9	65	40.412	168	23.551 %	BS19	17.8	190 atn	
20140703	642	1	20	1	51.8	65	41.144	168	26.929 %	BS18	16.6	187 atn	
20140703	645	1	20	2	52.5	65	41.235	168	26.937 %	BS18	16.8	184 atn	BStrait14020.hdr error: station should be BS18, not BS20
20140703	658	1	21	1	52.1	65	41.687	168	29.004 %	BS17S	16.1	185 atn	
20140703	701	1	21	2	51.6	65	41.782	168	28.978 %	BS17S	16.5	188 atn	
20140703	713	1	22	1	52.9	65	42.183	168	31.347 %	BS17	15.4	187 atn	
20140703	716	1	22	2	53	65	42.238	168	31.39 %	BS17	15.4	187 atn	
20140703	737	1	23	1	49.9	65	43.269	168	35.537 %	BS16	15.5	196 atn	
20140703	739	1	23	2	50	65	43,352	168	35.56 %	BS16	16.2	190 atn	
20140703	803	1	24	1	50.2	65	44 367	168	40.032 %	BS15	14.1	187 atn	
20140703	806	1	24	2	50.2	65	11 133	168	30 032 %	BS15	15	107 util 103 atn	
20140703	800	1	24	1	51.1	65	44.435	100	12 221 %	B315 B\$14	16.4	102 atn	
20140703	024	1	25	2	51.1	05	45.275	108	43.331 /0	B314 DC14	10.4	193 atri	
20140703	820	1	25	2	51.1	65	45.329	108	43.379 %	B514	17.3	188 atn	
20140703	847	1	26	1	50.1	65	46.351	168	47.607 %	BS13	17.3	186 ath	
20140703	849	1	26	2	50.1	65	46.432	168	47.672 %	BS13	17.1	184 atn	
20140703	910	1	27	1	42.9	65	47.245	168	51.597 %	BS12	24	181 atn	
20140703	913	1	27	2	42.8	65	47.313	168	51.643 %	BS12	24.8	178 atn	
20140703	932	1	28	1	45.6	65	48.316	168	55.867 %	BS11	20.7	192 atn	T/S vertically constant!
20140703	934	1	28	2	45.7	65	48.396	168	55.879 %	BS11	24.1	190 atn	
20140703	944	1	29	1	45.8	65	49.279	168	56.099 %	DL1	19.6	188 atn	T/S still near constant vertically
20140703	946	1	29	2	45.9	65	49.366	168	56.021 %	DL1	20.8	188 atn	
20140703	956	1	30	1	45.8	65	50.264	168	56.32 %	DL2	13.9	183 atn	
20140703	958	1	30	2	45.9	65	50.336	168	56.413 %	DL2	14.3	177 atn	T/S suspiciously constant,
20140703	1009	1	31	1	46.5	65	51.256	168	56.227 %	DL3	10.7	222 atn	
20140703	1011	1	31	2	46.5	65	51.338	168	56.272 %	DL3	11.3	191 atn	
20140703	1028	1	32	1	44.3	65	52,226	168	56.258 %	DL4	13.7	191 atn	
20140703	1030	1	32	2	44	65	52 268	168	56 329 %	DI 4	14.2	173 atn	
20140703	1041	1	33	1	46.5	65	53 172	168	56 218 %	DIS	10.6	198 atn	
201/0703	1044	1	22	2	46.7	65	53 2/3	168	56 201 %	DIS	13.3	180 atn	
20140703	1055	1	24	1	40.7	65	54 152	160	56 172 %	DIG	15.5	100 atn	
20140703	1055	1	24	2	47.2	65	54.152	108	50.173 /6	DIE	5.5	105 atri	
20140703	1100	1	25	2	47.1	05	54.235	108	50.148 //	DEG	14.4	190 atri	
20140703	1108	1	35	1	47.6	65	55.133	168	56.177 %		9.5	194 ath	
20140703	1110	1	35	2	47.4	65	55.208	168	56.239 %	DL7	8.9	189 atn	
20140703	1121	1	36	1	48.1	65	56.114	168	56.185 %	DL8	10.5	214 atn	nice reversal of T (colder at surface)
20140703	1123	1	36	2	48.2	65	56.202	168	56.224 %	DL8	9.4	198 atn	upcast quite different near surface
20140703	1133	1	37	1	49.1	65	57.097	168	56.201 %	DL9	12.5	202 atn	
20140703	1136	1	37	2	49.1	65	57.185	168	56.227 %	DL9	11.8	192 atn	
20140703	1145	1	38	1	50.1	65	58.064	168	56.202 %	DL10	14.3	207 atn	
20140703	1148	1	38	2	50.1	65	58.151	168	56.223 %	DL10	16.4	202 atn	upcast catching warmer water
20140703	1157	1	39	1	50.5	65	59.048	168	56.179 %	DL11	14.3	208 atn	
20140703	1200	1	39	2	50.4	65	59.162	168	56.198 %	DL11	13.5	201 atn	
20140703	1210	1	40	1	50.9	66	0.03	168	56.2 %	DL12	14.7	209 ACPF	
20140703	1212	1	40	2	50.9	66	0.08	168	56.2 %	DL12	14.4	196 ACPF	
% Wrong xmlco	on file (BS	- Strait	14031. inst	ead of	* v3.xmlcon) c	on casts n	rior to this	Corrected	here.				
20140703	1232	1	,	1	51 2	66	2 56	168	56 24 %	DI 13	15 5	205 ACPF	Stations more spaced now
20140/03	1202	+	41	-	51.2	50	2.00	100	JU.24 /0	DLIJ	10.0	203 ACT	stations more spaced nom.

20140703	1235	1	41	2	51.2	66	2.66	168	56.3 %	DL13	15.3	196 ACPF	
20140703	1255	1	42	1	53.1	66	5.11	168	56.2 %	DL14	16.2	204 ACPF	T-S ~ constant with depth, but T1=T2, S1=S2. Is ok.
20140703	1257	1	42	2	53.2	66	5.19	168	56.22 %	DL14	16	194 ACPF	
20140703	1316	1	43	1	53.1	66	7.66	168	56.2 %	DL15	18.1	201 ACPF	Water column well T-S mixed.
20140703	1319	1	43	2	53	66	7.75	168	56.24 %	DL15	17.8	191 ACPF	
20140703	1337	1	44	1	52.9	66	10.2	168	56.11 %	DL16	13.6	202 ACPF	Finally some T-S structure here, with halocline.
20140703	1340	1	44	2	53.1	66	10.31	168	56.09 %	DL16	20.5	196 ACPF	
20140703	1358	1	45	1	55.3	66	12.73	168	56.23 %	DL17	22.2	207 ACPF	Winds and swell picking up
20140703	1400	1	45	2	54.7	66	12.8	168	56.27 %	DL17	20.7	190 ACPF	
20140703	1420	1	46	1	55.7	66	15.37	168	56.09 %	DL18	20.5	208 ACPF	Big swell, stopped well above bottom (at 51 m)
20140703	1423	1	46	2	55.6	66	15.43	168	56.06 %	DL18	18.9	210 ACPF	U , , , , , , , , , , , , , , , , , , ,
20140703	1441	1	47	1	54.6	66	17.98	168	56.09 %	DL19	19	201 ACPF	Swell calmed. Likely touched bottom, but package ok on recovery.
20140703	1444	1	47	2	54.7	66	18.05	168	56.09 %	DL19	18.5	203 ACPF	END OF DL line
20140703	1458	1	48	1	54.6	66	19 73	168	56.99 %	Δ3-14	20.9	193 ACPE	START OF AL line NE bound
20140703	1500	1	48	2	54.0	66	19.79	168	56.96 %	A3-14	20.5	190 ACPF	** Hdr files have wrong station IDs on this line (1 station off)
20140703	1513	1	40	1	54.1	66	20 496	168	53 647 %	ΔΙ 13	22.1	188 RID	
20140703	1515	1	10	2	54.3	66	20.450	168	53 701 %	AL 13	22.0	100 RID	
20140703	1517	1	50	1	53.6	66	20.015	168	49.46 %	AL15 Al 14	18.2	197 ACPE	
20140703	1535	1	50	2	53.3	66	21.10	168	49.40 %	AL 14	23.6	199 ACPE	
20140703	1550	1	50	1	45.7	66	21.217	160	45 21 %	AL 15	20.7	104 ACRE	
20140703	1550	1	51	2	43.7	66	21.04	100	45.21 %	AL15	20.7	100 ACPF	
20140703	1555	1	51	2	40	66	21.91	160	45.17 %	ALIS ALIS	25.1	190 ACPF	Winds and soas calming down guite fast
20140703	1612	1	52	2	50.2	66	22.33	100	40.93 %	ALIO	10.3	201 ACFF	winds and seas carning down quite last
20140703	1012	1	52	2	50	00	22.50	100	40.95 %	ALIO	10.0	206 ACPF	
20140703	1628	1	53	1	54	66	23.20	108	30.55 %	AL17	10.5	185 ACPF	very smooth prome
20140703	1631	1	53	2	54	66	23.31	168	36.62 %	AL17	1/	193 ACPF	
20140703	1649	1	54	1	51.6	66	23.97	168	32.28 %	AL18	15.6	188 ACPF	
20140703	1652	1	54	2	51.9	66	23.98	168	32.35 %	AL18	16.4	193 ACPF	
20140703	1709	1	55	1	52.6	66	24.69	168	27.9 %	AL19	14.9	183 ACPF	Homogeneous T&S all through depth
20140703	1712	1	55	2	52.6	66	24.71	168	27.94 %	AL19	14.9	183 ACPF	
20140703	1727	1	56	1	51.2	66	25.36	168	23.62 %	AL20	16.7	185 ACPF	Nearly-homogeneous T&S all through depth
20140703	1730	1	56	2	51.2	66	25.39	168	23.65 %	AL20	16.2	180 ACPF	
20140703	1743	1	57	1	46.5	66	26	168	19.37 %	AL21	16.2	194 ACPF	
20140703	1746	1	57	2	46.3	66	26.01	168	19.31 %	AL21	17	200 ACPF	
20140703	1800	1	58	1	39.6	66	26.71	168	14.95 %	AL22	16.4	194 ACPF	
20140703	1802	1	58	2	39.4	66	26.73	168	14.9 %	AL22	19.4	198 ACPF	
20140703	1815	1	59	1	32.3	66	27.42	168	10.72 %	AL23	18.5	200 ACPF	
20140703	1817	1	59	2	32.3	66	27.42	168	10.67 %	AL23	18.5	200 ACPF	
20140703	1834	1	60	1	26	66	28.23	168	6.14 %	AL24	19.4	190 ACPF	Hdr file has Al24ok. Calmer, Perhaps touched bottom.
20140703	1836	1	60	2	26	66	28.24	168	6.18 %	AL24	19.1	191 ACPF	END OF AL line
20140704	204	1	61	1	48.7	67	38.009	168	55.984 %	CS10US	16.5	174 RJD	START OF CS line NE bound
20140704	207	1	61	2	48.7	67	38.117	168	55.738 %	CS10US	16.6	172 RJD	
20140704	236	1	62	1	48.5	67	40.678	168	48.114 %	CS10.5	16.2	171 RJD	
20140704	238	1	62	2	48.3	67	40.733	168	48.094 %	CS10.5	17.6	183 RJD	
20140704	319	1	63	1	48.5	67	45.263	168	39.943 %	CS11	14.1	191 RJD	
20140704	322	1	63	2	48.5	67	45.298	168	39.913 %	CS11	13.7	180 RJD	
20140704	404	1	64	1	49.4	67	48.886	168	29.529 %	CS11.5	12.4	145 RJD	
20140704	406	1	64	2	49.3	67	48,929	168	29.52 %	CS11.5	9.7	148 RJD	
20140704	446	1	65	1	54.6	67	52 467	168	18 977 %	CS12	17.2	164 atn	
20140704	440	1	65	2	54.0	67	52.407	168	18 936 %	CS12 CS12	16.5	179 atn	
20140704	525	1	66	-	57 5	67	55 847	168	9 285 %	CS12 5	10.5	173 atn	
20140704	525	1	66	2	57.5	67	55 887	169	9 277 %	CS12.5	10.5	174 stn	
20140704	520	1 1	67	ے 1	57.2	67	59.267	167	50 58 %	CS12.5	17.1	1/4 aui 1/6 atr	
20140704	600	1 1	67	2	52.9	67	50 211	167	55.30 %	CS13	15.8	152 oto	
20140704	649	1	60	4	55.Z	0/	25.311	107	39.042 %	CS13	14.5	152 dtn	
20140704	648	1	68	1	52.2	68	2.66/	167	49.8// %	CS13.5	19.4	159 atn	ality and a support for a first state of the
20140704	651	1	68	2	52.3	68	2.706	167	49.882 %	CS13.5	18	165 atn	snip moved on upcast for wire angle. Note zigzag on upcast.
20140704	/28	1	69	1	50.9	68	6.06	167	40.057 %	CS14	19.4	161 atn	/degu water!
20140704	/30	1	69	2	50.6	68	6.104	167	40.1 %	CS14	17.9	165 atn	
20140704	807	1	70	1	47	68	9.078	167	30.856 %	CS14.5	19.3	178 atn	

20140704	809	1	70	2	47.2	68	9.122	167	30.815 %	CS14.5	18.8	185 atn	
20140704	852	1	71	1	46.1	68	12.06	167	21.527 %	CS15	16.8	181 atn	
20140704	854	1	71	2	46.1	68	12.081	167	21.492 %	CS15	17.8	190 atn	
20140704	912	1	72	1	44.3	68	13.553	167	16.894 %	CS15.5	16.7	183 atn	
20140704	915	1	72	2	44.7	68	13.572	167	16.832 %	CS15.5	16.8	191 atn	
20140704	933	1	73	1	43.2	68	14.958	167	12.262 %	CS16	15.4	182 atn	
20140704	935	1	73	2	43.3	68	14.976	167	12.204 %	CS16	15.7	189 atn	
20140704	954	1	74	1	40.1	68	16.555	167	7.669 %	CS16.5	14.2	171 atn	
20140704	956	1	74	2	40.1	68	16.568	167	7.602 %	CS16.5	14.3	193 atn	
20140704	1013	1	75	1	37.1	68	17.964	167	2.991 %	CS17	16.5	190 atn	
20140704	1015	1	75	2	36.5	68	17,976	167	2.929 %	CS17	17.4	186 atn	
20140704	1034	1	76	1	32.4	68	18 893	166	57 748 %	CS18	14.1	193 atn	
20140704	1036	1	76	2	32.1	68	18 912	166	57 773 %	CS18	14 1	192 atn	
20140704	1100	1	77	1	25.1	68	19 867	166	52 465 %	CS19	14.1	180 atn	
20140704	1103	1	77	2	25.3	68	19.886	166	52.405 %	CS19	12.9	182 atn	END OF CS line
20140704	1615	1	70	1	25.5	60	54.45	166	10.95 %	1151	15.0	102 400	START OF US line W bound
20140704	1617	1	70	1	20.5	60	54.45	100	19.85 %	1151	15.5	192 ACFF	deeper (22Em) thermoslines
20140704	1621	1	70	2	20.5	60	54.40	100	19.64 %		15.0	107 ACPF	deeper (225m) thermoclines
20140704	1031	1	79	1	20.0	00	54.62	100	25.15 %	LISZ	15.4	197 ACPF	deeper (2511) thermochiles
20140704	1634	1	79	2	30.9	68	54.82	100	25.16 %	LISZ	15.5	196 ACPF	
20140704	1648	1	80	1	32.2	68	55.26	166	30.48 %	LIS3	13.3	190 ACPF	
20140704	1650	1	80	2	32.4	68	55.21	166	30.59 %	LIS3	15.6	195 ACPF	
20140704	1710	1	81	1	40.1	68	55.82	166	38.5 %	LIS4	15.8	187 ACPF	Half a s blanking of screen during upcast near surface. Out of water?
20140704	1712	1	81	2	40.1	68	55.84	166	38.53 %	LIS4	15.4	185 ACPF	
20140704	1733	1	82	1	44.3	68	56.44	166	46.54 %	LIS5	16.7	179 ACPF	
20140704	1736	1	82	2	44.2	68	56.47	166	46.56 %	LIS5	17.9	183 ACPF	
20140704	1758	1	83	1	45.2	68	56.98	166	54.56 %	LIS6	16.5	199 ACPF	
20140704	1800	1	83	2	45.2	68	57	166	54.5 %	LIS6	16.6	186 ACPF	
20140704	1820	1	84	1	45.2	68	57.61	167	1.2 %	LIS6.5	15.6	188 ACPF	Hdr mislabelled as LIS7, but correct is LIS6.5
20140704	1823	1	84	2	44.9	68	57.62	167	1.22 %	LIS6.5	16.8	184 ACPF	
20140704	1844	1	85	1	45.1	68	58.23	167	9.29 %	LIS7	17	180 ACPF	
20140704	1846	1	85	2	45.1	68	58.24	167	9.3 %	LIS7	16.7	193 ACPF	
20140704	1906	1	86	1	45.3	68	58.82	167	16.57 %	LIS7.5	15.5	184 ACPF	
20140704	1908	1	86	2	45.3	68	58.83	167	16.62 %	LIS7.5	18	178 ACPF	
20140704	1927	1	87	1	45.8	68	59.41	167	23.95 %	LIS8	14.3	188 ACPF	
20140704	1930	1	87	2	45.9	68	59.41	167	23.97 %	LIS8	16.6	187 ACPF	
20140704	2015	1	88	1	47.1	69	0.643	167	38.767 %	LIS9	16.5	175 RJD	
20140704	2018	1	88	2	47.3	69	0.678	167	38.707 %	LIS9	17.3	192 RJD	
20140704	2056	1	89	1	47.7	69	1.808	167	53.356 %	LIS10	13.4	187 RJD	
20140704	2058	1	89	2	47.8	69	1.83	167	53.264 %	LIS10	15.9	173 RJD	
20140704	2136	1	90	1	48.5	69	1.36	168	7.927 %	LIS11	13.9	183 RJD	Hex file lost (2 copies of seasave open?)
20140704	2138	1	90	2	48.7	69	1.388	168	7.9 %	LIS11	14.1	180 RJD	
20140704	2205	1	91	-	48.6	69	1 386	168	8 062 %	11511	15.7	183 RID	recast of LIS11
20140704	2203	1	91	2	48.6	69	1 427	168	8 012 %	11511	14 5	185 RID	
20140704	2200	⊥ 1	92	<u>د</u> 1	40.0	60	0 001	169	77 4 %	11512	15.8	167 RID	
20140704	2243	1 1	92	1 2	45	60	0.001	169	22.7 /0	11512	12.0	177 PID	
20140704	2247	1	02	2	49 E0.2	60	0.93	100	22.430 %	LI312	14.2		
20140704	2525	1	32	1	50.2	69	0.445	100	30.969 %	LI313	14.5	177 KJD	
20140704	2325	1	93	2	50.7	69	0.46	168	36.927 %	LIS13	11.5	167 RJD	
20140704	2353	1	94	1	50.9	69	0.241	100	40.000 %	LI514	10.0	108 KJD	
20140704	2355	1	94	2	50.8	69	0.274	168	46.707 %	LIS14	14.3	167 KJD	
20140705	19	1	95	1	51	69	59.982	168	55.922 %	CCL22	12.7	173 RJD	START OF CCL line S bound
20140705	21	1	95	2	51.1	69	0.002	168	55.931 %	CCL22	11.4	171 RJD	
20140705	144	1	96	1	51.6	68	50.031	168	55.976 %	CCL21	13.8	190 RJD	
20140705	147	1	96	2	51.6	68	50.067	168	55.905 %	CCL21	13.9	188 RJD	
20140705	327	1	97	1	51.3	68	40.074	168	55.999 %	CCL20	13	184 RJD	
20140705	331	1	97	2	51.3	68	40.05	168	56.089 %	CCL20	13.1	194 RJD	
20140705	452	1	98	1	53.4	68	30.057	168	56.012 %	CCL19	10.8	189 atn	
20140705	454	1	98	2	53.2	68	30.033	168	56.127 %	CCL19	11.5	191 atn	
20140705	615	1	99	1	54.4	68	20.07	168	56.038 %	CCL18	10.9	181 atn	

20140705	618	1	99	2	54.5	68	20.04	168	56.152 %	CCL18	9.3	190 atn	Sucked up something at depth? (S spike upcast)
20140705	736	1	100	1	56	68	10.054	168	56.044 %	CCL17	6.8	184 atn	
20140705	739	1	100	2	56.1	68	10.008	168	56.177 %	CCL17	7.3	182 atn	
20140705	858	1	101	1	55.8	68	0.055	168	56.025 %	CCL16	6.9	141 atn	
20140705	901	1	101	2	55.7	67	59.98	168	56.102 %	CCL16	6.4	155 atn	
20140705	1016	1	102	1	49.2	67	50.067	168	56.014 %	CCL15	5.5	134 atn	
20140705	1019	1	102	2	49.3	67	50.005	168	56.05 %	CCL15	5.2	137 atn	
20140705	1146	1	103	1	48.7	67	38.232	168	56.084 %	CCL14	4.5	133 atn	
20140705	1148	1	103	2	48.7	67	38 251	168	56 227 %	CCI 14	2.9	141 atn	
20140705	1249	1	104	1	48.3	67	30.4	168	55 99 %	CCI 13	4 1	154 ACPF	
20140705	1251	1	104	2	48.3	67	30.01	168	56.02 %	CCI 13	3.9	165 ACPF	
20140705	1405	1	105	1	40.5	67	20.07	168	55.02 %	CCI 12	1.5	317 ACPE	
20140705	1405	1	105	2	47.0	67	10.09	169	55.01 %	CCI 12	1.5	222 ACDE	
20140705	1516	1	105	2	47.5	67	10.06	169	55.91 %		1.7	112 ACPF	
20140705	1510	1	100	2	47.1	67	10.00	100	55.55 %		2.0		
20140705	1010	1	100	2	47.1	67	10.07	100	55.88 %	CCLII	2.0	7.1 ACPF	
20140705	1630	1	107	1	46.1	00	59.99	108	56.03 %	CCL10	1.5	82 ACPF	
20140705	1032	1	107	2	46.1	66	59.97	108	55.96 %	CCLIU	2	74 ACPF	
20140705	1743	1	108	1	43.2	66	50.08	168	56 %	CCL9	1.7	301 ACPF	
20140705	1745	1	108	2	43.3	66	49.98	168	55.9 %	CCL9	1.3	289 ACPF	
20140705	1854	1	109	1	41.9	66	39.99	168	56.02 %	CCL8	6.4	289 ACPF	
20140705	1856	1	109	2	41.8	66	39.94	168	56.22 %	CCL8	7.4	296 ACPF	
20140705	1932	1	110	1	44.3	66	35.02	168	56.1 %	CCL7	7.1	317 ACPF	
20140705	1935	1	110	2	44.2	66	34.98	168	56.18 %	CCL7	6.7	315 ACPF	
20140705	2010	1	111	1	55	66	30.003	168	56.058 %	CCL6	4.4	349 RJD	
20140705	2013	1	111	2	55.1	66	29.964	168	56.186 %	CCL6	4.8	356 RJD	
20140705	2047	1	112	1	54.6	66	24.977	168	56.152 %	CCL5	4.8	346 RJD	
20140705	2050	1	112	2	54.9	66	24.943	168	56.358 %	CCL5	5.2	350 RJD	
20140705	2109	1	113	1	53.9	66	22.301	168	56.112 %	CCL4	4.5	6 RJD	
20140705	2112	1	112	2	E2 0	66	<u></u>	168	EC 33 0/		E 4	12 010	
		-	115	2	33.0	00	22.323	100	30.25 %	ULL4	5.1	12 UU	
20140705	2131	1	113	1	54.4	66	19.686	168	56.894 %	A3	3.5	16 RJD	
20140705 20140705	2131 2134	1 1	113 114 114	1 2	54.4 54.4	66 66	19.686 19.706	168 168	56.894 % 56.97 %	A3 A3	5.1 3.5 3.7	16 RJD 16 RJD 11 RJD	END OF CCL line
20140705 20140705 20140705	2131 2134 2151	1 1 1	113 114 114 115	2 1 2 1	54.4 54.4 54.9	66 66 66	19.686 19.706 17.847	168 168 168	56.23 % 56.894 % 56.97 % 56.162 %	A3 A3 DL19	3.5 3.7 1.8	16 RJD 11 RJD 12 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705	2131 2134 2151 2153	1 1 1 1	113 114 114 115 115	2 1 2 1 2	53.8 54.4 54.4 54.9 54.8	66 66 66 66	19.686 19.706 17.847 17.899	168 168 168 168 168	56.23 % 56.894 % 56.97 % 56.162 % 56.115 %	A3 A3 DL19 DL19	5.1 3.5 3.7 1.8 1.5	16 RJD 16 RJD 11 RJD 12 RJD 348 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215	1 1 1 1 1	113 114 114 115 115 116	2 1 2 1 2 1	53.8 54.4 54.4 54.9 54.8 55.8	66 66 66 66 66	19.686 19.706 17.847 17.899 15.284	168 168 168 168 168 168	56.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 %	A3 A3 DL19 DL19 DL18	5.1 3.5 3.7 1.8 1.5 1.2	15 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215 2217	1 1 1 1 1 1	113 114 114 115 115 116 116	2 1 2 1 2 1 2	53.8 54.4 54.9 54.8 55.8 55.8	66 66 66 66 66 66	19.686 19.706 17.847 17.899 15.284 15.308	168 168 168 168 168 168 168	56.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.529 %	A3 A3 DL19 DL19 DL18 DL18 DL18	3.5 3.7 1.8 1.5 1.2 0.9	15 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215 2217 2237	1 1 1 1 1 1 1 1	113 114 114 115 115 116 116 117	2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.8 55.4	66 66 66 66 66 66 66 66	19.686 19.706 17.847 17.899 15.284 15.308 12.724	168 168 168 168 168 168 168 168	56.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.529 % 56.272 %	A3 A3 DL19 DL19 DL18 DL18 DL18 DL17	3.5 3.7 1.8 1.5 1.2 0.9 3.2	15 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215 2217 2237 2240	1 1 1 1 1 1 1 1 1	113 114 114 115 115 116 116 117 117	2 1 2 1 2 1 2 1 2 1 2	53.8 54.4 54.9 54.8 55.8 55.8 55.8 55.4 55.4	66 66 66 66 66 66 66 66 66	19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664	168 168 168 168 168 168 168 168 168	56.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.529 % 56.272 % 56.331 %	A3 A3 DL19 DL19 DL18 DL18 DL18 DL17 DL17	3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7	16 RJD 16 RJD 11 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215 2217 2237 2240 2300	1 1 1 1 1 1 1 1 1 1 1	113 114 114 115 115 116 116 116 117 117 118	2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 55.4 55.4 55.4	66 66 66 66 66 66 66 66 66 66	19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183	168 168 168 168 168 168 168 168 168 168	56.23 % 56.894 % 56.162 % 56.115 % 56.316 % 56.229 % 56.272 % 56.331 % 56.15 %	A3 A3 DL19 DL19 DL18 DL18 DL18 DL17 DL17 DL16	3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1	13 KID 16 KID 11 RID 348 KID 306 KID 335 KID 344 KID 346 KID 334 KID	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302	1 1 1 1 1 1 1 1 1 1 1 1	113 114 114 115 115 116 116 117 117 117 118 118	2 1 2 1 2 1 2 1 2 1 2 1 2	53.8 54.4 54.9 54.8 55.8 55.8 55.8 55.4 55.4 55.4 54.3 54.3	66 66 66 66 66 66 66 66 66 66 66	19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222	168 168 168 168 168 168 168 168 168 168	36.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.29 % 56.29 % 56.311 % 56.313 % 56.155 % 56.166 %	A3 A3 DL19 DL19 DL18 DL18 DL17 DL17 DL17 DL16 DL16	3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1	13 KJD 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 334 RJD 327 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324	1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 114 115 115 116 116 117 117 117 118 118 118 119	2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 54.3 54.3 54.3 52.9	66 66 66 66 66 66 66 66 66 66 66 66	22:323 19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615	168 168 168 168 168 168 168 168 168 168	36.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.229 % 56.313 % 56.15 % 56.15 % 56.16 % 56.294 %	A3 A3 DL19 DL19 DL18 DL18 DL17 DL17 DL17 DL16 DL16 DL15	3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 6.1 1.4	13 KD 16 KJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 344 RJD 327 RJD 4 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2326	1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 114 115 115 116 116 117 117 117 118 118 118 119 119	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 55.4 54.3 54.3 54.3 54.3 52.9 52.9	66 66 66 66 66 66 66 66 66 66 66 66 66	19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615 7.55	168 1 1	36.23 % 56.894 % 56.97 % 56.162 % 56.316 % 56.229 % 56.311 % 56.15 % 56.15 % 56.166 % 56.224 % 56.331 % 56.455 % 56.456 % 56.242 % 56.263 %	A3 A3 DL19 DL19 DL18 DL18 DL17 DL17 DL16 DL16 DL16 DL15 DL15	3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4	13 KJD 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 334 RJD 327 RJD 4 RJD 345 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2326 2344	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 114 115 115 116 116 117 117 118 118 118 119 119 120	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 55.4 55.4 54.3 54.3 54.3 52.9 52.9 52.9 53.9	66 66 66 66 66 66 66 66 66 66 66 66 66	19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615 7.55 5.145	$\begin{array}{r} 168\\ 168\\ 168\\ 168\\ 168\\ 168\\ 168\\ 168\\$	36.23 % 56.894 % 56.77 % 56.162 % 56.115 % 56.316 % 56.272 % 56.153 % 56.156 % 56.166 % 56.294 % 56.183 % 56.283 % 56.283 % 56.283 % 56.233 %	A3 A3 DL19 DL19 DL18 DL18 DL17 DL17 DL16 DL16 DL16 DL15 DL15 DL15 DL14	3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 1.4 4 2.1	13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 334 RJD 327 RJD 4 RJD 345 RJD 27 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2326 2344 2326 2344 2348	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 114 115 115 116 116 117 117 118 118 119 119 120 120	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 55.4 54.3 54.3 54.3 54.3 52.9 52.9 53.9 53.3	66 66 66 66 66 66 66 66 66 66 66 66 66	19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615 7.55 5.145 5.126	168 168 168 168 168 168 168 168 168 168	36.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.272 % 56.313 % 56.15 % 56.15 % 56.272 % 56.318 % 56.323 % 56.233 % 56.233 % 56.233 % 56.233 % 56.42 %	A3 A3 DL19 DL19 DL18 DL18 DL17 DL17 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14	5.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 6.1 1.4 4 2.1 2.275	13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 334 RJD 327 RJD 4 RJD 345 RJD 27 RJD 31 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2326 2344 2326 2344 2348 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 114 115 115 116 116 117 117 118 118 119 119 120 120 121	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 55.4 54.3 54.3 54.3 52.9 52.9 52.9 53.9 53.9 53.3 51.5	60 66 66 66 66 66 66 66 66 66 66 66 66 6	22:323 19:686 19:706 17:847 17:899 15:284 15:308 12:724 10:183 10:222 7:615 7:55 5:145 5:126 2:548	168 168 168 168 168 168 168 168 168 168	36.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.229 % 56.313 % 56.315 % 56.316 % 56.294 % 56.294 % 56.233 % 56.23 % 56.23 % 56.24 % 56.24 % 56.24 % 56.23 % 56.42 % 56.14 %	A3 A3 DL19 DL19 DL18 DL18 DL17 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14 DL14 DL13	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 6.1 1.4 4 2.1 2.275 5.9	13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 334 RJD 327 RJD 4 RJD 345 RJD 27 RJD 345 RJD 343 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2326 2344 2326 2344 2348 7 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 120 121	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 54.3 54.3 54.3 54.3 52.9 52.9 52.9 53.9 53.9 53.3 51.5 51.3	66 66 66 66 66 66 66 66 66 66 66 66 66	22:323 19:686 19:706 17:847 17:899 15:284 15:308 12:724 12:664 10:183 10:222 7:615 7:55 5:126 2:548 2:597	168 168 168 168 168 168 168 168 168 168	36.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.29 % 56.31 % 56.15 % 56.166 % 56.294 % 56.294 % 56.23 % 56.23 % 56.24 % 56.24 % 56.24 % 56.24 % 56.23 % 56.24 % 56.24 % 56.01 %	A3 A3 DL19 DL19 DL18 DL18 DL17 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14 DL14 DL13 DL13	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6	13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 344 RJD 344 RJD 347 RJD 4 RJD 345 RJD 27 RJD 31 RJD 343 RJD 343 RJD 342 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2302 2324 2324 2324 2344 234	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 120 120 121 122	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	33.8 54.4 54.9 54.8 55.8 55.4 54.3 52.9 53.9 51.5 51.5 51.3 50.9	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66	22:323 19:686 19:706 17:847 17:899 15:284 15:308 12:724 12:664 10:183 10:222 7:615 7:55 5:145 5:145 5:145 5:145 5:126 2:548 2:597 0.015	168 168 168 168 168 168 168 168 168 168	36.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.29 % 56.313 % 56.15 % 56.166 % 56.294 % 56.233 % 56.23 % 56.42 % 56.14 % 56.010 % 56.010 %	A3 A3 DL19 DL19 DL18 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL15 DL15 DL14 DL14 DL14 DL13 DL13 DL12	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.275 5.9 5.6 5.5	13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 344 RJD 344 RJD 344 RJD 347 RJD 347 RJD 347 RJD 348 RJD 341 RJD 342 RJD 343 RJD 342 RJD 342 RJD 343 RJD 343 RJD 343 RJD 342 RJD 342 RJD 343 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706	2131 2134 2151 2153 2215 2217 2240 2300 2302 2324 2326 2344 2326 2344 2326 2344 2348 7 9 31 34	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 120 121 122 122	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 54.3 54.3 54.3 54.3 52.9 52.9 52.9 53.9 53.3 51.5 51.3 50.9 50.8	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65	22:323 19:686 19:706 17:847 17:899 15:284 15:308 12:724 12:664 10:183 10:222 7:615 7:55 5:145 5:126 2:548 2:597 0.015 59:999	168 168 168 168 168 168 168 168 168 168	36.23 % 56.23 % 56.94 % 56.162 % 56.115 % 56.229 % 56.316 % 56.317 % 56.15 % 56.15 % 56.15 % 56.223 % 56.233 % 56.233 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.242 % 56.001 % 56.277 % 56.361 %	A3 A3 DL19 DL19 DL18 DL18 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL15 DL15 DL14 DL14 DL14 DL13 DL13 DL12 DL12	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6 5.5	15 ND 16 RJD 11 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 347 RJD 347 RJD 347 RJD 347 RJD 348 RJD 347 RJD 348 RJD 343 RJD 318 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2230 2300 2302 2324 2326 2344 2326 2344 2328 7 9 9 31 34 43	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 121 122 122 122 123	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 54.3 54.3 54.3 54.3 52.9 52.9 53.9 53.9 53.9 53.3 51.5 51.3 50.9 50.8 50.8	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65 65 65	22.323 19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615 7.55 5.145 5.126 2.548 2.597 0.015 59.999	168 168	36.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.272 % 56.313 % 56.15 % 56.15 % 56.166 % 56.273 % 56.283 % 56.283 % 56.283 % 56.283 % 56.283 % 56.314 % 56.001 % 56.287 % 56.283 % 56.283 %	A3 A3 DL19 DL19 DL18 DL18 DL17 DL17 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14 DL14 DL14 DL13 DL13 DL13 DL12 DL12 DL11	5.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6 5.5 5.6 6.3	13 ND 16 RJD 11 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 346 RJD 347 RJD 348 RJD 347 RJD 348 RJD 347 RJD 348 RJD 347 RJD 348 RJD 348 RJD 348 RJD 348 RJD 318 RJD 318 RJD 320 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2324 2324 2324 2344 234	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 120 121 122 123	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 55.4 54.3 54.3 54.3 54.3 52.9 52.9 53.9 53.9 53.9 53.9 53.3 51.5 51.3 50.9 50.8 50.8 50.8 50.4	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65 65 65	22.323 19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615 7.55 5.145 5.126 2.548 2.597 0.015 59.999 58.009	168 168	36.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.229 % 56.313 % 56.314 % 56.323 % 56.233 % 56.234 % 56.234 % 56.234 % 56.234 % 56.234 % 56.234 % 56.234 % 56.234 % 56.234 % 56.237 % 56.261 % 56.283 % 56.361 % 56.361 % 56.323 % 56.339 %	A3 A3 DL19 DL19 DL18 DL17 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL14 DL14 DL14 DL13 DL13 DL13 DL12 DL12 DL11 DL11	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6 5.5 6.6 6.3 6.1	13 ND 16 RJD 11 RJD 348 RJD 306 RJD 335 RJD 346 RJD 346 RJD 346 RJD 347 RJD 348 RJD 347 RJD 348 RJD 347 RJD 345 RJD 345 RJD 347 RJD 343 RJD 342 RJD 318 RJD 318 RJD 320 RJD 322 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2324 2324 2324 2324	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 117 118 119 120 121 122 123 123 124	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.4 55.4 55.4 54.3 52.9 53.9 51.3 50.9 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.4 50.8 50.4 50.3	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65 65 65 65	22:323 19:686 19:706 17:847 17:899 15:284 15:308 12:724 12:664 10:183 10:222 7:615 7:55 5:145 5:126 2:548 2:597 0.015 59:999 58:079 58:083	168 168 168 168 168 168 168 168 168 168	36.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.229 % 56.315 % 56.315 % 56.318 % 56.294 % 56.234 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.23 % 56.242 % 56.399 % 56.339 % 56.399 % 56.166 %	A3 A3 DL19 DL19 DL18 DL17 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL13 DL13 DL13 DL13 DL12 DL12 DL12 DL11 DL11 DL11 DL10	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6 5.5 6.6 6.3 6.1 6.1	15 ND 16 RJD 11 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 346 RJD 347 RJD 348 RJD 347 RJD 348 RJD 345 RJD 345 RJD 311 RJD 318 RJD 318 RJD 320 RJD 322 RJD 321 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2300 2302 2324 2326 2324 2326 2344 2326 2344 2348 7 9 31 34 43 46 57	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 121 122 123 122 123 124	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	33.8 54.4 54.9 54.8 55.8 55.4 55.4 54.3 52.9 53.9 51.3 50.9 50.8 50.8 50.8 50.4 50.3 50.4 50.3 50.4 50.3 50.4 50.3 50.4 50.3 50.4 50.3 50.4	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65 65 65 65	22:323 19:686 19:706 17:847 17:899 15:284 15:308 12:724 12:664 10:183 10:222 7:615 7:55 5:126 5:126 5:126 2:548 2:597 0.015 59:999 58:009 58:009 58:009 58:009	168 168	36.23 % 56.894 % 56.97 % 56.162 % 56.115 % 56.316 % 56.299 % 56.313 % 56.315 % 56.318 % 56.323 % 56.234 % 56.234 % 56.23 % 56.23 % 56.242 % 56.361 % 56.361 % 56.361 % 56.363 % 56.364 % 56.365 % 56.366 % 56.361 % 56.363 %	A3 A3 DL19 DL19 DL18 DL17 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14 DL13 DL13 DL13 DL12 DL12 DL12 DL12 DL11 DL11 DL10 DL10	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.175 5.9 5.6 5.5 5.6 6.3 6.1 6	13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 344 RJD 344 RJD 344 RJD 347 RJD 348 RJD 347 RJD 348 RJD 343 RJD 318 RJD 320 RJD 322 RJD 327 RJD 327 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2300 2302 2324 2326 2324 2326 2344 2326 2344 2326 2344 2348 7 9 31 34 43 46 57 106	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 121 122 123 123 124 125	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.4 54.3 52.9 53.3 51.3 50.9 50.8 50.8 50.4 51.3 50.4	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65 65 65 65 65	22:323 19:686 19:706 17:847 17:899 15:284 15:308 12:724 12:664 10:183 10:222 7:615 7:55 5:145 5:145 5:145 5:145 5:145 5:268 2:548 2:597 0.015 59:999 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009	168 168	$\begin{array}{c} 36.23 \ \% \\ 56.23 \ \% \\ 56.77 \ \% \\ 56.162 \ \% \\ 56.115 \ \% \\ 56.316 \ \% \\ 56.316 \ \% \\ 56.529 \ \% \\ 56.331 \ \% \\ 56.15 \ \% \\ 56.15 \ \% \\ 56.15 \ \% \\ 56.233 \ \% \\ 56.233 \ \% \\ 56.23 \ \% \\ 56.23 \ \% \\ 56.23 \ \% \\ 56.23 \ \% \\ 56.23 \ \% \\ 56.23 \ \% \\ 56.23 \ \% \\ 56.23 \ \% \\ 56.23 \ \% \\ 56.361 \ \% \\ 56.361 \ \% \\ 56.361 \ \% \\ 56.361 \ \% \\ 56.366 \ \% \\ 56.366 \ \% \\ 56.163 \ \% \\ 56.136 \ \% \end{array}$	A3 A3 DL19 DL19 DL18 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL13 DL13 DL13 DL13 DL12 DL12 DL12 DL12 DL11 DL11 DL11 DL10 DL10 DL10 DL10 DL10	5.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.17 5.9 5.6 5.5 5.6 6.3 6.1 6 6.6 4.2	13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 344 RJD 344 RJD 343 RJD 347 RJD 347 RJD 348 RJD 347 RJD 348 RJD 341 RJD 343 RJD 342 RJD 318 RJD 320 RJD 322 RJD 323 RJD 323 RJD 328 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2326 2324 2326 2344 2326 2344 2326 2344 2348 7 9 31 34 43 46 54 57 106	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 121 122 122 122 123 124 125	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 55.4 54.3 54.3 54.3 54.3 54.3	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65 65 65 65 65 65 65	22.323 19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615 7.55 5.145 5.126 2.548 2.597 0.015 58.099 58.009 58.099 58.099 58.099 58.083 58.083	168 168 <td>30:23 % 56.23 % 56.94 % 56.162 % 56.115 % 56.272 % 56.316 % 56.313 % 56.15 % 56.316 % 56.323 % 56.272 % 56.318 % 56.318 % 56.233 % 56.233 % 56.233 % 56.263 % 56.263 % 56.361 % 56.383 % 56.163 % 55.963 %</td> <td>A3 A3 DL19 DL19 DL18 DL17 DL17 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14 DL14 DL14 DL13 DL13 DL12 DL12 DL11 DL11 DL11 DL11 DL10 DL9 DL9</td> <td>5.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6 5.5 6.3 6.1 6 6.2</td> <td>13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 344 RJD 345 RJD 344 RJD 327 RJD 4 RJD 345 RJD 347 RJD 348 RJD 347 RJD 348 RJD 347 RJD 348 RJD 349 RJD 341 RJD 342 RJD 343 RJD 342 RJD 318 RJD 320 RJD 322 RJD 323 RJD 323 RJD 328 RJD 329 RJD 329 RJD</td> <td>END OF CCL line Start of DL line S bound</td>	30:23 % 56.23 % 56.94 % 56.162 % 56.115 % 56.272 % 56.316 % 56.313 % 56.15 % 56.316 % 56.323 % 56.272 % 56.318 % 56.318 % 56.233 % 56.233 % 56.233 % 56.263 % 56.263 % 56.361 % 56.383 % 56.163 % 55.963 %	A3 A3 DL19 DL19 DL18 DL17 DL17 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14 DL14 DL14 DL13 DL13 DL12 DL12 DL11 DL11 DL11 DL11 DL10 DL9 DL9	5.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6 5.5 6.3 6.1 6 6.2	13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 344 RJD 345 RJD 344 RJD 327 RJD 4 RJD 345 RJD 347 RJD 348 RJD 347 RJD 348 RJD 347 RJD 348 RJD 349 RJD 341 RJD 342 RJD 343 RJD 342 RJD 318 RJD 320 RJD 322 RJD 323 RJD 323 RJD 328 RJD 329 RJD 329 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2302 2324 2326 2344 2326 2344 2348 7 9 311 34 43 46 54 57 106 109 119	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 121 122 123 124 125 125 126	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.4 54.9 54.8 55.8 55.8 55.4 55.4 54.3 54.3 54.3 54.3 52.9 52.9 53.3 51.5 51.3 50.9 50.8 50.8 50.8 50.8 50.4 50.3 50.4 49.4 49.6 48.3	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65 65 65 65 65 65 65 65 65 65 65	22.323 19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615 7.55 5.145 5.126 2.548 2.597 0.015 59.999 58.009 58.009 58.049 57.124 57.13	168 168	30:23 % 56.23 % 56.94 % 56.77 % 56.162 % 56.115 % 56.229 % 56.15 % 56.318 % 56.318 % 56.329 % 56.318 % 56.318 % 56.329 % 56.318 % 56.329 % 56.318 % 56.329 % 56.318 % 56.323 % 56.321 % 56.323 % 56.323 % 56.323 % 56.323 % 56.323 % 56.323 % 56.323 % 56.323 % 56.339 % 56.166 % 55.963 % 56.289 %	A3 A3 DL19 DL19 DL18 DL17 DL17 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14 DL13 DL13 DL13 DL12 DL12 DL11 DL11 DL11 DL11 DL10 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9	5.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 6.1 2.275 5.9 5.6 5.5 5.6 6.3 6.1 6 6.2 6.2 6.7	13 ND 16 RJD 11 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 344 RJD 347 RJD 348 RJD 341 RJD 342 RJD 343 RJD 342 RJD 318 RJD 320 RJD 321 RJD 322 RJD 323 RJD 328 RJD 339 RJD 330 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2324 2324 2324 2344 234	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 117 118 119 120 121 122 123 123 124 125 126 127	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.4 55.4 55.4 55.4 54.3 54.3 52.9 53.9 51.3 50.8 50.8 50.4 50.3 50.4 49.4 49.6 48.3	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65 65 65 65 65 65 65 65 65	22.323 19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615 7.55 5.145 5.126 2.548 2.597 0.015 59.999 58.009 58.079 58.083 58.049 57.124 57.124 57.13 56.058	168 168	36.23 % 56.894 % 56.77 % 56.162 % 56.115 % 56.316 % 56.229 % 56.318 % 56.318 % 56.318 % 56.323 % 56.234 % 56.234 % 56.234 % 56.234 % 56.234 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.238 % 56.283 % 56.283 % 56.328 % 56.328 % 56.328 % 56.363 % 56.289 % 56.322 %	A3 A3 DL19 DL19 DL18 DL17 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL14 DL14 DL13 DL13 DL13 DL13 DL12 DL12 DL12 DL12 DL11 DL11 DL11 DL10 DL10 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL18 DL18 DL18 DL18 DL18 DL18 DL18 DL18	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6 5.5 5.6 6.3 6.1 6 6.3 6.1 6.2 6.3 6.4 6.3	15 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 346 RJD 346 RJD 346 RJD 347 RJD 348 RJD 347 RJD 348 RJD 347 RJD 348 RJD 347 RJD 348 RJD 3418 RJD 312 RJD 312 RJD 320 RJD 3217 RJD 322 RJD 323 RJD 323 RJD 323 RJD 330 RJD 330 RJD	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2300 2302 2324 2326 2324 2326 2344 2326 2344 2326 2344 2348 7 9 31 34 43 46 57 106 109 119 129 129 130	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 117 118 119 120 121 122 123 123 124 125 126 127	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.4 55.4 55.4 54.3 52.9 52.9 53.9 51.3 50.8 50.8 50.8 50.4 50.3 50.4 48.3 48.3 47.6	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65	22:323 19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615 7.55 5.126 2.548 2.597 0.015 59.999 58.099 58.099 58.099 58.099 58.099 58.099 58.092 56.058	168 168 <td>36.23 % 56.23 % 56.94 % 56.77 % 56.162 % 56.115 % 56.29 % 56.316 % 56.297 % 56.318 % 56.318 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.293 % 56.294 % 56.361 % 56.361 % 56.163 % 56.163 % 56.363 % 56.326 % 56.327 % 56.323 % 56.323 % 56.327 %</td> <td>A3 A3 DL19 DL19 DL18 DL17 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14 DL13 DL13 DL13 DL13 DL12 DL12 DL12 DL12 DL11 DL11 DL11 DL10 DL10 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9</td> <td>3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6 5.5 5.6 6.1 6.1 6.2 6.7 6.2 6.7 6.3 5.8</td> <td>13 ND 16 RJD 11 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 344 RJD 343 RJD 347 RJD 348 RJD 347 RJD 348 RJD 347 RJD 345 RJD 343 RJD 343 RJD 343 RJD 343 RJD 318 RJD 320 RJD 322 RJD 323 RJD 323 RJD 323 RJD 323 RJD 330 RJD 323 RJD 323 RJD 323 RJD 320 RJD 320 RJD 320</td> <td>END OF CCL line Start of DL line S bound</td>	36.23 % 56.23 % 56.94 % 56.77 % 56.162 % 56.115 % 56.29 % 56.316 % 56.297 % 56.318 % 56.318 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.294 % 56.293 % 56.294 % 56.361 % 56.361 % 56.163 % 56.163 % 56.363 % 56.326 % 56.327 % 56.323 % 56.323 % 56.327 %	A3 A3 DL19 DL19 DL18 DL17 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14 DL13 DL13 DL13 DL13 DL12 DL12 DL12 DL12 DL11 DL11 DL11 DL10 DL10 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6 5.5 5.6 6.1 6.1 6.2 6.7 6.2 6.7 6.3 5.8	13 ND 16 RJD 11 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 344 RJD 343 RJD 347 RJD 348 RJD 347 RJD 348 RJD 347 RJD 345 RJD 343 RJD 343 RJD 343 RJD 343 RJD 318 RJD 320 RJD 322 RJD 323 RJD 323 RJD 323 RJD 323 RJD 330 RJD 323 RJD 323 RJD 323 RJD 320 RJD 320 RJD 320	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2326 2324 2326 2344 2326 2344 2326 2344 2326 2344 2348 7 9 31 34 43 46 57 106 109 119 121 133	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 121 122 123 124 125 126 127 128	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	33.8 54.4 54.9 54.8 55.8 55.4 54.3 52.9 53.9 51.3 50.9 50.8 50.4 50.8 50.4	66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65	22:323 19:686 19:706 17:847 17:899 15:284 15:308 12:724 12:664 10:183 10:222 7:615 7:55 5:126 2:548 2:597 0:015 59:999 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 58:009 55:124	168 168	36.23 % 56.894 % 56.77 % 56.162 % 56.115 % 56.316 % 56.299 % 56.311 % 56.15 % 56.313 % 56.323 % 56.294 % 56.294 % 56.233 % 56.242 % 56.361 % 56.361 % 56.363 % 56.361 % 56.363 % 56.363 % 56.166 % 56.166 % 56.361 % 56.361 % 56.363 % 56.363 % 56.363 % 56.363 % 56.322 % 56.327 % 56.439 %	A3 A3 DL19 DL19 DL18 DL17 DL16 DL16 DL16 DL16 DL15 DL15 DL15 DL14 DL14 DL14 DL13 DL13 DL12 DL12 DL12 DL12 DL12 DL12 DL11 DL10 DL10 DL10 DL10 DL10 DL10 DL10	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.17 5.9 5.6 5.5 5.6 6.3 6.1 6.2 6.7 6.3 5.8 5.8	13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 346 RJD 344 RJD 344 RJD 347 RJD 348 RJD 347 RJD 348 RJD 347 RJD 348 RJD 343 RJD 320 RJD 323 RJD 320 RJD 323 RJD 320 RJD 323 RJD 330 RJD 330 RJD 333 RJD 333	END OF CCL line Start of DL line S bound
20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140705 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	2131 2134 2151 2153 2215 2217 2237 2240 2300 2302 2324 2326 2344 2326 2344 2326 2344 2326 2344 2348 7 9 31 34 43 46 54 57 106 109 119 121 130 133 142	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 114 115 115 116 117 118 119 120 121 122 123 124 125 126 127 128	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	53.8 54.4 54.9 54.8 55.8 55.8 55.4 55.4 54.3 54.3 54.3 54.3 54.3 52.9 53.9 53.9 53.9 53.9 53.9 53.3 51.5 51.3 50.9 50.8 50.4 50.4 50.4 50.4 49.6 48.3 48.3 48.3 47.6 47.8	66 65 65 65 65 65 65 65 65 65 65 65	22.323 19.686 19.706 17.847 17.899 15.284 15.308 12.724 12.664 10.183 10.222 7.615 7.55 5.145 5.126 2.548 2.547 0.015 59.999 58.009 58.009 58.009 58.009 58.009 58.009 57.124 57.13 56.052 55.146 55.132	168 168	30:23 % 56.23 % 56.77 % 56.162 % 56.115 % 56.272 % 56.316 % 56.272 % 56.313 % 56.15 % 56.313 % 56.15 % 56.31 % 56.233 % 56.233 % 56.233 % 56.233 % 56.283 % 56.283 % 56.283 % 56.361 % 56.283 % 56.361 % 56.363 % 56.163 % 55.963 % 56.322 % 56.327 % 56.327 % 56.327 % 56.327 %	A3 A3 DL19 DL19 DL18 DL17 DL17 DL16 DL16 DL16 DL15 DL15 DL14 DL14 DL14 DL14 DL13 DL12 DL12 DL12 DL11 DL11 DL11 DL11 DL10 DL10 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9 DL9	3.1 3.5 3.7 1.8 1.5 1.2 0.9 3.2 3.7 6.1 6.1 1.4 4 2.1 2.275 5.9 5.6 5.5 5.6 6.3 6.1 6 6.6 4.2 6.2 6.7 6.3 5.8 6.7	13 ND 16 RJD 11 RJD 12 RJD 348 RJD 306 RJD 335 RJD 344 RJD 335 RJD 344 RJD 327 RJD 345 RJD 37 RJD 345 RJD 317 RJD 343 RJD 342 RJD 343 RJD 342 RJD 318 RJD 320 RJD 322 RJD 323 RJD 323 RJD 323 RJD 330 RJD 330 RJD 330 RJD 330 RJD 330 RJD 332 RJD 330 RJD 330 RJD <tr t=""> 330<!--</td--><td>END OF CCL line Start of DL line S bound</td></tr>	END OF CCL line Start of DL line S bound
END OF CCL line Start of DL line S bound													

	20140706	145	1	128	2	47.5	65	54.11	168	56.305 %	DL6	5.2	325 RJD	
	20140706	153	1	129	1	46.8	65	53.195	168	56.25 %	DL5	6.2	325 RJD	
	20140706	156	1	129	2	46.7	65	53.18	168	56.139 %	DL5	6.1	308 RJD	
	20140706	205	1	130	1	44.5	65	52.252	168	56.27 %	DL4	6.6	323 RJD	
	20140706	207	1	130	2	44.1	65	52.247	168	56.454 %	DL4	7.6	338 RJD	
	20140706	216	1	131	1	46.7	65	51.241	168	56.293 %	DL3	4.7	333 RJD	
	20140706	221	1	131	2	46.6	65	51.249	168	56.546 %	DL3	5.5	339 RJD	
	20140706	230	1	132	1	46.3	65	50.336	168	56.298 %	DL2	4.5	303 RJD	
	20140706	232	1	132	2	45.9	65	50.371	168	56.389 %	DL2	4.7	306 RJD	
	20140706	243	1	133	1	45.7	65	49.368	168	56.29 %	DL1	6.3	313 RJD	
	20140706	245	1	133	2	45.5	65	49.403	168	56.327 %	DL1	5.9	306 RJD	END OF DL line
_	20140706	301	1	134	1	43.4	65	49.273	168	52.309 %	DLa1	7.2	322 atn	Start of Dla Line
	20140706	303	1	134	2	43.4	65	49.221	168	52.287 %	DLa1	7.7	325 atn	
	20140706	313	1	135	1	45.3	65	50.255	168	52.089 %	DLa2	7.4	320 RJD	
	20140706	315	1	135	2	46.3	65	50.317	168	51.884 %	DLa2	6.6	335 RJD	
	20140706	323	1	136	1	47.5	65	51.226	168	52.19 %	DLa3	6.5	340 RJD	
	20140706	325	1	136	2	47.5	65	51.296	168	52.256 %	DLa3	7	335 RJD	
	20140706	333	1	137	1	48.1	65	52.194	168	52.144 %	DLa4	6.4	336 RJD	
	20140706	335	1	137	2	48.1	65	52.22	168	51.999 %	DLa4	6.5	344 RJD	
	20140706	344	1	138	1	48.2	65	53.136	168	52.103 %	DLa5	7.3	350 RJD	
	20140706	346	1	138	2	46.8	65	53.13	168	51.975 %	DLa5	7.1	359 RJD	
	20140706	356	1	139	1	48.3	65	54.12	168	52.216 %	DLa6	6.7	348 RJD	
	20140706	358	1	139	2	48.1	65	54.154	168	52.081 %	DLa6	6.1	356 RJD	.hdr file mislabeled as DLa5, should be DLa6
	20140706	408	1	140	1	49.3	65	55.161	168	52.29 %	DLa7	5.8	348 atn	
	20140706	411	1	140	2	49.5	65	55.148	168	52.21 %	DLa7	3.2	3 atn	
	20140706	420	1	141	1	50.4	65	56.089	168	52.205 %	DLa8	5.7	358 atn	
	20140706	422	1	141	2	50.6	65	56.124	168	52.026 %	DLa8	5.7	6 atn	
	20140706	431	1	142	1	50.3	65	57.114	168	52.227 %	DLa9	6.1	5 atn	
	20140706	434	1	142	2	50.3	65	57.104	168	52.223 %	DLa9	6.1	14 atn	
	20140706	442	1	143	1	50.6	65	58.011	168	52.233 %	DLa10	6.7	357 atn	
	20140706	444	1	143	2	50.7	65	58.043	168	52.067 %	DLa10	5.9	8 atn	
	20140706	455	1	144	1	50.8	65	59.047	168	52.226 %	DLa11	5.3	8 atn	
	20140706	457	1	144	2	50.8	65	59.054	168	52.1 %	DLa11	5.7	14 atn	
	20140706	511	1	145	1	51.3	65	59.966	168	52.199 %	DLa12	6.4	28 atn	
	20140706	513	1	145	2	51.1	65	59.974	168	52.294 %	DLa12	4.6	12 atn	End of Dla Line
	20140706	527	1	146	1	51.6	65	59.999	168	48.235 %	DLb12	6.1	356 atn	Start of DLb Line
	20140706	530	1	146	2	51.6	66	0.042	168	48.203 %	DLb12	6.5	3 atn	
	20140706	539	1	147	1	52.2	65	59.091	168	48.209 %	DLb11	7.5	348 atn	
	20140706	542	1	147	2	51.9	65	59.019	168	48.311 %	DLb11	7.7	348 atn	
	20140706	551	1	148	1	51.3	65	58,111	168	48,183 %	DLb10	9.5	345 atn	
	20140706	553	1	148	2	51.4	65	58.118	168	48.287 %	DLb10	8.8	357 atn	
	20140706	604	1	149	1	51.4	65	57.149	168	48.264 %	DLb9	9.2	352 atn	nice multi-lavers, multiple mixed events?
	20140706	606	1	149	2	51.4	65	57.159	168	48.399 %	DLb9	9.2	358 atn	
	20140706	617	1	150	1	51.4	65	56.158	168	48.159 %	DLb8	8.2	351 atn	
	20140706	619	1	150	2	51.4	65	56.166	168	48.295 %	DLb8	8.2	2 atn	
	20140706	630	1	151	1	51.6	65	55.156	168	48.181 %	DLb7	7.1	3 atn	
	20140706	632	1	151	2	51.7	65	55,124	168	48.353 %	DLb7	7.9	15 atn	
	20140706	642	1	152	1	51	65	54.21	168	48.234 %	DLb6	9.7	3 atn	
	20140706	644	1	152	2	51.1	65	54.244	168	48.394 %	DLb6	9.4	13 atn	
	20140706	655	1	153	1	50.7	65	53,186	168	48.12 %	DLb5	9.5	18 atn	BIG signal of turbidity + fluoro at bottom
	20140706	658	1	153	2	50.8	65	53.122	168	48.005 %	DLb5	9.3	11 atn	<u> </u>
	20140706	706	1	154	1	50.2	65	52.249	168	48.244 %	DLb4	9.9	9 atn	interesting warm+saline layer at bottom
	20140706	709	1	154	2	50	65	52.266	168	48.373 %	DLb4	9.2	17 atn	J ,
	20140706	719	1	155	1	49.1	65	51.285	168	48.191 %	DLb3	7	4 atn	
	20140706	721	1	155	2	48.9	65	51.265	168	48.293 %	DLb3	8.6	4 atn	
	20140706	733	1	156	1	48.9	65	50.303	168	48.203 %	DLb2	7.1	351 atn	
	201/0706	735	1	156	2	49.1	65	50 308	168	48 344 %	DI b2	0.0	0 atra	
	20140700		-	100	~		05	30.300	100	40.344 /0	DLUZ	0.0	U aui	
	20140706	746	1	157	1	48.7	65	49.335	168	48.234 %	DLb2 DLb1	8.8 9.9	349 atn	

20140700	749	1	157	2	48.5	65	49.374	168	48.391 %	DLb1	8.6	6 atn	END OF DLb line
20140706	916	1	158	1	50.7	66	0.04	168	55.885 %	NBS1	9.4	17 atn	START OF NBS Line, E bound
20140706	918	1	158	2	50.5	66	0.083	168	55.914 %	NBS1	9.8	12 atn	
20140706	929	1	159	1	50.8	66	0.016	168	52 996 %	NBS1 5	10.1	357 atn	
201/0706	032	1	150	2	50.8	66	0.056	168	52.834 %	NBS1 5	10.2	356 atn	
20140700	932	1	100	2	50.8	00	0.030	100	J2.834 /6	NBS1.5	10.2	350 atri	
20140706	942	1	160	1	51.6	05	59.98	108	49.849 %	NB52	9.8	356 atri	
20140706	945	1	160	2	51.7	66	0.01	168	49.692 %	NBS2	9.7	359 atn	
20140706	957	1	161	1	51.7	66	0.024	168	45.838 %	NBS2.5	9.8	0 atn	
20140706	1000	1	161	2	51.8	66	0.088	168	45.684 %	NBS2.5	10.3	3 atn	
20140706	1013	1	162	1	51.6	65	59.971	168	41.692 %	NBS3	9.1	356 atn	
20140706	1015	1	162	2	51.6	66	0.014	168	41.515 %	NBS3	9.7	350 atn	
20140706	1029	1	163	1	51.1	65	59.973	168	37.47 %	NBS3.5	9.3	5 atn	
20140706	1031	1	163	2	51.3	66	0.011	168	37.315 %	NBS3.5	9.3	359 atn	
20140706	1045	1	164	1	51 7	65	59 901	168	33 315 %	NBS4	10.9	357 atn	
201/0706	10/18	1	164	2	52	65	59.901	168	33 207 %	NBSA	9.5	357 atn	
20140700	11040	1	165	1	52	65	50.000	100	20.1F %	NDS4 E	11.6	2E4 atn	
20140706	1101	1	105	1	52	05	59.992	100	29.15 %	NB34.5	11.0	554 dti	
20140706	1104	1	165	2	51.6	66	0.056	168	29.048 %	NBS4.5	10.2	351 atn	
20140706	1117	1	166	1	55.4	66	0	168	25.092 %	NBS5	11.8	352 atn	
20140706	1120	1	166	2	55.4	66	0.053	168	24.962 %	NBS5	11.3	348 atn	
20140706	1134	1	167	1	52.2	65	59.992	168	20.818 %	NBS5.5	10.6	353 atn	
20140706	1137	1	167	2	52.2	66	0.036	168	20.681 %	NBS5.5	10.6	350 atn	
20140706	1151	1	168	1	51.2	65	59.995	168	16.464 %	NBS6	10.5	0 atn	
20140706	1154	1	168	2	51.1	66	0.039	168	16.292 %	NBS6	11.5	357 atn	
20140706	1212	1	169	1	48.3	65	59.98	168	12.51 %	NBS6.5	10.5	356 ACPF	
20140706	1214	1	169	2	48.2	65	59.90	168	12 35 %	NBS6 5	11 9	344 ACPF	
20140706	1214	1	170	1	40.2	66	55.57	169	2.55 %	NBS0.5	0 1		
20140700	1227	1	170	1	45.8	00	0	100	0.0 %	NDS7	10.1		
20140706	1229	1	170	2	45.4	66	0.04	168	8.43 %	NBS7	10.1	U ACPF	
20140706	1244	1	171	1	38.4	66	0	168	4.32 %	NBS7.5	10.5	1 ACPF	
20140706	1246	1	171	2	38.3	66	0.04	168	4.16 %	NBS7.5	10.7	359 ACPF	
20140706	1303	1	172	1	32	66	0.01	168	0.11 %	NBS8	12.2	17 ACPF	
20140706	1304	1	172	2	31.9	66	0	167	59.98 %	NBS8	11.9	30 ACPF	
20140706	1321	1	173	1	19.7	65	59.98	167	55.28 %	NBS9	12.8	13 ACPF	
20140706	1323	1	173	2	19.6	66	0.01	167	55.21 %	NBS9	12.1	13 ACPF	END OF NBS line
20140706	4.600	1	174	1	46.8	6F	E2 09		EE 00 %	MDSp1	1/1 0	350 ACPF	START OF MBSn line E bound
	1623	-				0.0	.12.00	168	.).).00 /0	IVIDALL	14.0		
20140706	1623 1625	1	174	2	46.8	65	52.08	168 168	55.86 %	MBSn1	14.0	355 ACPE	
20140706	1623 1625	1	174	2	46.8	65 65	52.08	168 168 168	55.86 %	MBSn1 MBSn1	13.6	355 ACPF	
20140706 20140706 20140706	1623 1625 1636	1 1	174 175	2	46.8	65 65	52.08 52.07 52.02	168 168 168	55.86 % 52.63 %	MBSn1 MBSn1 MBSn1.5	14.8 13.6 11.7	355 ACPF 2 ACPF	
20140706 20140706 20140706	1623 1625 1636 1638	1 1 1	174 175 175	1 2 1 2	46.8 47.7 47.7	65 65 65	52.08 52.07 52.02 52.07	168 168 168 168	55.86 % 55.86 % 52.63 % 52.58 %	MBSn1 MBSn1.5 MBSn1.5	14.8 13.6 11.7 13.9	355 ACPF 2 ACPF 12 ACPF	
20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652	1 1 1 1	174 175 175 176	2 1 2 1	46.8 46.8 47.7 47.7 49.1	65 65 65 65	52.08 52.07 52.02 52.07 51.85	168 168 168 168 168	55.86 % 55.63 % 52.58 % 49.15 %	MBSn1 MBSn1.5 MBSn2.5 MBSn2	14.8 13.6 11.7 13.9 13.2	355 ACPF 2 ACPF 12 ACPF 4 ACPF	
20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654	1 1 1 1 1	174 175 175 176 176	2 1 2 1 2	46.8 47.7 47.7 49.1 49.1	65 65 65 65 65	52.08 52.07 52.02 52.07 51.85 51.86	168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2	14.8 13.6 11.7 13.9 13.2 13.7	355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF	
20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709	1 1 1 1 1 1	174 175 175 176 176 177	1 2 1 2 1 2 1 2	46.8 47.7 47.7 49.1 49.1 51	65 65 65 65 65 65	52.08 52.07 52.02 52.07 51.85 51.86 51.76	168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2.5	14.8 13.6 11.7 13.9 13.2 13.7 14.1	355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF	
20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711	1 1 1 1 1 1 1	174 175 175 176 176 177 177	1 2 1 2 1 2 1 2 1 2	46.8 47.7 47.7 49.1 49.1 51 51.2	65 65 65 65 65 65 65	52.08 52.07 52.02 52.07 51.85 51.86 51.76 51.8	168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 45.04 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2.5 MBSn2.5	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9	355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF	
20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727	1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 177	1 2 1 2 1 2 1 2 1 2 1	46.8 47.7 47.7 49.1 49.1 51 51.2 51.2	65 65 65 65 65 65 65 65	52.08 52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68	168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 45.04 % 45.98 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2.5 MBSn2.5 MBSn2.5 MBSn3	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16	355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730	1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 178 178	1 2 1 2 1 2 1 2 1 2 1 2	40.8 46.8 47.7 47.7 49.1 49.1 51 51 51.2 51.2 51.2 51.2	65 65 65 65 65 65 65 65 65 65	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 40.98 % 40.98 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2.5 MBSn2.5 MBSn3 MBSn3	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745	1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 178 178 178 179	1 2 1 2 1 2 1 2 1 2 1 2 1 2	40.8 46.8 47.7 47.7 49.1 51 51 51.2 51.2 51.2 51.2 51.2 51.2	65 65 65 65 65 65 65 65 65 65	52.07 52.02 52.07 51.85 51.86 51.86 51.8 51.8 51.8 51.7 51.57	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 45.04 % 40.98 % 40.96 % 36.49 %	MBSn1 MBSn1.5 MBSn2.5 MBSn2 MBSn2.5 MBSn2.5 MBSn3 MBSn3 MBSn3.5	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 359 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747	1 1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 178 178 178 179 179	1 2 1 2 1 2 1 2 1 2 1 2 1 2	40.8 46.8 47.7 49.1 49.1 51 51.2 51.2 51.2 51.2 51.7 51.7	65 65 65 65 65 65 65 65 65 65	52.07 52.07 52.02 51.85 51.86 51.76 51.8 51.68 51.7 51.57 51.6	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 45.04 % 40.98 % 40.98 % 40.96 % 36.49 % 36.43 %	MBSn1 MBSn1.5 MBSn2.5 MBSn2.5 MBSn2.5 MBSn3 MBSn3 MBSn3.5 MBSn3.5	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8	355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 359 ACPF 356 ACPF	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747	1 1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 178 178 178 179 179	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	40.8 46.8 47.7 49.1 49.1 51 51.2 51.2 51.2 51.2 51.7 51.7 51.4	65 65 65 65 65 65 65 65 65 65 65	52.07 52.07 52.02 51.85 51.86 51.76 51.8 51.68 51.7 51.57 51.6 51.4	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 45 % 40.98 % 40.96 % 36.49 % 36.43 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2.5 MBSn2.5 MBSn3 MBSn3 MBSn3.5 MBSn4	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 359 ACPF 356 ACPF 1 ACPE 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804	1 1 1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 178 178 178 179 179 180	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	46.8 46.7 47.7 49.1 49.1 51 51.2 51.2 51.2 51.2 51.2 51.7 51.7 51.4	65 65 65 65 65 65 65 65 65 65 65 65	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.57 51.67 51.48	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 45.5 % 40.98 % 40.96 % 36.49 % 36.43 % 31.99 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2.5 MBSn3 MBSn3 MBSn3 MBSn3 MBSn3 MBSn3.5 MBSn4	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9 12.2	355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 359 ACPF 356 ACPF 1 ACPF	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804 1804	1 1 1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 177 178 178 179 179 180 180	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	40.8 46.8 47.7 47.7 49.1 49.1 51 51.2 51.2 51.2 51.2 51.7 51.7 51.4 51.4	65 65 65 65 65 65 65 65 65 65 65 65	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.67 51.67 51.67 51.68 51.48 51.51	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 40.98 % 40.96 % 36.49 % 36.43 % 31.99 % 31.92 %	MBSn1 MBSn1.5 MBSn2.5 MBSn2 MBSn2.5 MBSn3 MBSn3 MBSn3.5 MBSn4 MBSn4 MBSn4	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9 12.9	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 356 ACPF 1 ACPF 355 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804 1806 1822	1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 178 178 179 179 180 180 180	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	46.8 47.7 47.7 49.1 51 51.2 51.2 51.2 51.2 51.7 51.7 51.4 51.4 51.4 54	65 65 65 65 65 65 65 65 65 65 65 65 65	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.68 51.57 51.6 51.48 51.51 51.51 51.37	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 45.04 % 45.98 % 40.96 % 36.49 % 36.43 % 31.99 % 31.92 % 27.61 %	MBSn1 MBSn1.5 MBSn2.5 MBSn2 MBSn2.5 MBSn3.5 MBSn3 MBSn3.5 MBSn4 MBSn4 MBSn4.5	13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9 12.9 12.2	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 356 ACPF 1 ACPF 355 ACPF 16 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804 1806 1822 1825	1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 176 176 177 177 178 178 179 179 180 180 181 181	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	46.8 46.7 47.7 49.1 51 51.2 51.2 51.2 51.2 51.2 51.7 51.7 51.7 51.4 51.4 54 54.3	65 65 65 65 65 65 65 65 65 65 65 65 65 6	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.67 51.67 51.6 51.48 51.51 51.37 51.41	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.63 % 49.15 % 49.11 % 45.04 % 45.5 % 40.98 % 40.96 % 36.49 % 36.49 % 36.43 % 31.99 % 31.92 % 27.61 % 27.55 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2 MBSn2.5 MBSn3 MBSn3 MBSn3 MBSn3 MBSn3.5 MBSn4 MBSn4 MBSn4.5 MBSn4.5	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9 12.9 12.2 14.1	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 359 ACPF 356 ACPF 1 ACPF 355 ACPF 16 ACPF 17 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1806 1822 1825 1842	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 176 176 177 177 178 178 178 179 179 179 180 180 180 181 181 181	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	40.8 46.8 47.7 47.7 49.1 49.1 51.2 51.2 51.2 51.2 51.2 51.7 51.7 51.4 51.4 51.4 54.3 50.2	65 65 65 65 65 65 65 65 65 65 65 65 65 6	52.07 52.02 52.07 51.85 51.86 51.86 51.76 51.8 51.68 51.7 51.57 51.67 51.48 51.51 51.37 51.41 51.33	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 45.5 % 40.98 % 40.96 % 36.49 % 36.43 % 31.99 % 31.99 % 31.92 % 27.61 % 27.55 % 23.06 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2 MBSn3 MBSn3 MBSn3 MBSn3 MBSn3 MBSn3 MBSn4 MBSn4 MBSn4 MBSn4.5 MBSn5	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9 12.9 12.2 14.1 12.4	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 355 ACPF 355 ACPF 1 ACPF 355 ACPF 16 ACPF 17 ACPF 8 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804 1804 1822 1825 1842	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 176 176 177 177 178 178 179 179 180 180 180 180 181 181 181 182 182	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	40.8 46.8 47.7 47.7 49.1 51 51.2 51.2 51.2 51.2 51.2 51.7 51.7 51.4 51.4 51.4 51.4 54.3 50.2 50.2	65 65 65 65 65 65 65 65 65 65 65 65 65 6	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.57 51.67 51.48 51.51 51.37 51.37 51.31 51.33 51.34	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 40.98 % 40.96 % 36.49 % 36.49 % 36.43 % 31.99 % 31.92 % 27.61 % 27.55 % 23.06 % 23.01 %	MBSn1 MBSn1 MBSn1.5 MBSn2 MBSn2 MBSn2 MBSn2 MBSn3 MBSn3 MBSn3 MBSn3 MBSn3 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4 MBSn5 MBSn5 MBSn5 MBSn5	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9 12.9 12.2 14.1 12.4 13.6	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 356 ACPF 1 ACPF 355 ACPF 16 ACPF 16 ACPF 8 ACPF 0 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804 1806 1822 1825 1842 1842 1844 1901	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 176 176 177 177 178 178 178 179 179 180 180 180 181 181 181 182 182 182	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	46.8 47.7 47.7 49.1 51 51.2 51.2 51.2 51.2 51.7 51.7 51.7 51.7 51.4 51.4 51.4 51.4 54 54 54.3 50.2 50.2 48.6	65 65 65 65 65 65 65 65 65 65 65 65 65 6	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.57 51.67 51.67 51.67 51.63 51.41 51.37 51.31 51.34 51.34 51.19	168 168 168 168 168 168 168 168 168 168	55.86 % 55.86 % 52.63 % 49.15 % 49.11 % 45.04 % 45.04 % 40.96 % 36.49 % 36.49 % 36.49 % 31.99 % 31.92 % 27.61 % 27.55 % 23.06 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2 MBSn2.5 MBSn3 MBSn3 MBSn3 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4 MBSn5 MBSn5 MBSn5.5	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9 12.9 12.2 14.1 12.4 13.6 12.5	 355 ACPF 2 ACPF 4 ACPF 0 ACPF 2 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 356 ACPF 155 ACPF 155 ACPF 16 ACPF 17 ACPF 8 ACPF 0 ACPF 351 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804 1806 1822 1825 1842 1842 1842 1844 1901	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 178 178 179 179 179 180 180 180 181 181 181 182 182 183 183	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	46.8 46.7 47.7 49.1 51 51.2 51.2 51.2 51.2 51.2 51.7 51.7 51.4 51.4 54.3 50.2 50.2 48.6 48.3	65 65 65 65 65 65 65 65 65 65 65 65 65 6	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.67 51.67 51.67 51.67 51.64 51.37 51.41 51.33 51.34 51.34 51.39 51.22	168 168 168 168 168 168 168 168 168 168	53.86 % 52.63 % 52.63 % 49.15 % 49.11 % 45.04 % 45 % 40.98 % 40.96 % 36.49 % 36.49 % 36.49 % 36.43 % 31.92 % 27.61 % 27.61 % 27.55 % 23.06 % 23.01 % 18.56 %	MBSn1 MBSn1.5 MBSn2.5 MBSn2 MBSn2 MBSn2.5 MBSn3 MBSn3 MBSn3 MBSn3.5 MBSn4 MBSn4 MBSn4 MBSn4.5 MBSn4 MBSn5 MBSn5 MBSn5.5	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9 12.9 12.2 14.1 12.4 13.6 12.5 14.6	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 359 ACPF 356 ACPF 1 ACPF 355 ACPF 16 ACPF 16 ACPF 17 ACPF 8 ACPF 0 ACPF 351 ACPF 354 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804 1804 1822 1825 1842 1825 1842 1844 1901 1903	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 177 178 178 179 179 180 180 180 181 181 181 182 182 183 183 183	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	46.8 46.7 47.7 49.1 49.1 51.2 51.2 51.2 51.2 51.2 51.7 51.4 51.4 54.3 50.2 50.2 48.6 48.3 45	65 65 65 65 65 65 65 65 65 65 65 65 65 6	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.57 51.67 51.68 51.77 51.67 51.48 51.51 51.37 51.41 51.37 51.41 51.33 51.34 51.34 51.22 51.08	168 168 168 168 168 168 168 168 168 168	53.86 % 52.63 % 52.63 % 49.15 % 49.11 % 45.04 % 45.5 % 40.98 % 40.96 % 36.49 % 36.49 % 36.43 % 31.99 % 31.92 % 27.61 % 27.55 % 23.06 % 23.01 % 18.56 % 18.56 % 18.96 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2 MBSn2 MBSn3 MBSn3 MBSn3 MBSn3 MBSn3 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9 12.9 12.2 14.1 12.4 13.6 12.5 14.6 12.5	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 356 ACPF 355 ACPF 1 ACPF 355 ACPF 16 ACPF 17 ACPF 8 ACPF 0 ACPF 351 ACPF 354 ACPF 356 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804 1806 1822 1824 1844 1901 1903 1919	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 178 178 179 179 179 180 180 181 181 181 181 182 182 182 183 183	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	40.8 46.8 47.7 47.7 49.1 51 51.2 51.2 51.2 51.2 51.2 51.2 51.7 51.7 51.4 51.4 51.4 54.3 50.2 50.2 48.6 48.3 44.8	65 65 65 65 65 65 65 65 65 65 65 65 65 6	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.76 51.8 51.77 51.67 51.67 51.68 51.77 51.67 51.48 51.57 51.64 51.37 51.37 51.34 51.33 51.34 51.32 51.22 51.08	168 168 168 168 168 168 168 168 168 168	55.86 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 40.98 % 40.96 % 36.49 % 36.49 % 31.99 % 31.99 % 31.92 % 27.61 % 23.06 % 23.01 % 18.56 % 18.49 % 13.96 %	MBSn1 MBSn1.5 MBSn2.5 MBSn2 MBSn2 MBSn2.5 MBSn3 MBSn3 MBSn3 MBSn3.5 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4.5 MBSn4 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5	14.8 13.6 11.7 13.9 13.2 13.7 14.1 14.9 16 17 15.4 15.8 14.9 12.9 12.9 12.2 14.1 12.4 13.6 12.5 14.6 12.5 14.6	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 356 ACPF 1 ACPF 355 ACPF 16 ACPF 17 ACPF 8 ACPF 0 ACPF 351 ACPF 354 ACPF 356 ACPF 356 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1806 1822 1825 1842 1842 1842 1842 1842 18901 1903 1919 1921	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 178 178 179 179 180 180 180 181 181 181 182 183 183 183 184 184	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	46.8 47.7 47.7 49.1 51 51.2 51.2 51.2 51.2 51.2 51.7 51.7 51.7 51.4 51.4 51.4 51.4 51.4 51.4 51.4 51.4	65 65 65 65 65 65 65 65 65 65 65 65 65 6	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.57 51.6 51.6 51.6 51.51 51.37 51.61 51.37 51.41 51.37 51.41 51.34 51.19 51.22 51.08 51.12	168 168 168 168 168 168 168 168 168 168	53.86 % 55.86 % 52.63 % 49.15 % 49.11 % 45.04 % 40.98 % 40.96 % 36.49 % 36.49 % 31.99 % 31.92 % 27.61 % 27.55 % 23.06 % 23.01 % 18.56 % 18.49 % 13.96 % 13.96 % 13.9 %	MBSn1 MBSn1.5 MBSn2.5 MBSn2 MBSn2 MBSn2.5 MBSn3 MBSn3 MBSn3 MBSn4 MBSn4 MBSn4 MBSn4 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5.5 MBSn6 MBSn6 MBSn6 MBSn6	$\begin{array}{c} 14.8\\ 13.6\\ 11.7\\ 13.9\\ 13.2\\ 13.7\\ 14.1\\ 14.9\\ 16\\ 17\\ 15.4\\ 15.8\\ 14.9\\ 12.9\\ 12.2\\ 14.1\\ 12.4\\ 13.6\\ 12.5\\ 14.6\\ 12.5\\ 14.6\\ 12.5\\ 16.9\\ 12.9\\ 12.2\\ 14.1\\ 12.4\\ 13.6\\ 12.5\\ 14.6\\ 12.5\\ 16.9\\ 12.$	 355 ACPF 2 ACPF 12 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 356 ACPF 155 ACPF 16 ACPF 17 ACPF 17 ACPF 8 ACPF 10 ACPF 351 ACPF 354 ACPF 356 ACPF 356 ACPF 356 ACPF 354 ACPF 354 ACPF 354 ACPF 354 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804 1804 1822 1825 1842 1844 1903 1919 1921 1934	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 175 176 176 177 177 178 178 179 179 180 180 180 180 181 181 182 182 183 183 183 183 184 184	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	46.8 46.7 47.7 49.1 51 51.2 51.2 51.2 51.2 51.2 51.7 51.4 51.4 51.4 54.3 50.2 50.2 48.6 48.3 45 44.8 45	65 65 65 65 65 65 65 65 65 65 65 65 65 6	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.67 51.67 51.68 51.77 51.67 51.68 51.37 51.41 51.37 51.41 51.33 51.34 51.33 51.34 51.22 51.08 51.12 51.08	168 168 168 168 168 168 168 168 168 168	53.86 % 52.63 % 52.63 % 49.15 % 49.11 % 45.04 % 45 % 40.98 % 40.96 % 36.49 % 36.43 % 31.92 % 27.61 % 27.55 % 23.06 % 23.01 % 18.56 % 18.49 % 13.96 % 13.96 % 13.9 %	MBSn1 MBSn1.5 MBSn2.5 MBSn2 MBSn2 MBSn2.5 MBSn3 MBSn3 MBSn3 MBSn3.5 MBSn4 MBSn4 MBSn4 MBSn4 MBSn4 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn6 MBSn6 MBSn6 MBSn6 MBSn6 MBSn6 MBSn6 MBSn6	$\begin{array}{c} 14.8\\ 13.6\\ 11.7\\ 13.9\\ 13.2\\ 13.7\\ 14.1\\ 14.9\\ 16\\ 17\\ 15.4\\ 15.8\\ 14.9\\ 12.9\\ 12.2\\ 14.1\\ 12.4\\ 13.6\\ 12.5\\ 14.6\\ 12.5\\ 14.6\\ 12.5\\ 16.9\\ 12.8\\ 12.$	 355 ACPF 2 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 359 ACPF 356 ACPF 1 ACPF 355 ACPF 16 ACPF 17 ACPF 8 ACPF 10 ACPF 351 ACPF 354 ACPF 356 ACPF 356 ACPF 354 ACPF 354 ACPF 355 ACPF 354 ACPF 354 ACPF 354 ACPF 354 ACPF 354 ACPF 355 ACPF 354 ACPF 	
20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706 20140706	1623 1625 1636 1638 1652 1654 1709 1711 1727 1730 1745 1747 1804 1804 1822 1825 1842 1825 1842 1825 1844 1901 1903 1919 1921 1934 1936	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174 175 176 176 177 177 178 178 179 179 180 180 181 181 181 182 182 183 183 183 184 184 185 185	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	$\begin{array}{c} 40.8\\ 40.8\\ 47.7\\ 47.7\\ 49.1\\ 49.1\\ 51\\ 51.2\\ 51.2\\ 51.2\\ 51.2\\ 51.2\\ 51.7\\ 51.7\\ 51.4\\ 51.4\\ 54.3\\ 50.2\\ 50.2\\ 48.6\\ 48.3\\ 45\\ 48.3\\ 45\\ 44.8\\ 44\\ 44\\ 44\\ \end{array}$	65 65 65 65 65 65 65 65 65 65 65 65 65 6	52.07 52.02 52.07 51.85 51.86 51.76 51.8 51.68 51.7 51.57 51.68 51.7 51.61 51.41 51.37 51.41 51.37 51.41 51.34 51.34 51.34 51.34 51.32 51.41 51.32 51.41 51.34 51.32 51.08 51.11	168 168 168 168 168 168 168 168 168 168	53.86 % 52.63 % 52.63 % 52.58 % 49.15 % 49.11 % 45.04 % 45.5 % 40.98 % 40.96 % 36.49 % 36.43 % 31.99 % 31.92 % 27.61 % 27.55 % 23.06 % 23.01 % 18.56 % 18.49 % 13.9 % 10.45 % 10.4 %	MBSn1 MBSn1.5 MBSn1.5 MBSn2 MBSn2 MBSn2 MBSn2 SSN3 MBSn3 MBSn3 MBSn3 MBSn3 MBSn3 MBSn4 MBSn4 MBSn4 MBSn4 MBSn5 MBSn5 MBSn5 MBSn5 MBSn5 MBSn6 MBSn6 MBSn6 MBSn6 SSN5 MBSn6 SSN5 MBSn6 SSN5 MBSn6 SSN5 MBSn6 SSN5 MBSn6 SSN5 MBSn6 SSN5 MBSn6 SSN5 MBSn6 SSN5 MBSn6 SSN5 MBSn6 SSN6 SSN6 SSN6 SSN6 SSN6 SSN6 SSN6 S	$\begin{array}{c} 14.8\\ 13.6\\ 11.7\\ 13.9\\ 13.2\\ 13.7\\ 14.1\\ 14.9\\ 16\\ 17\\ 15.4\\ 15.8\\ 14.9\\ 12.9\\ 12.2\\ 14.1\\ 12.4\\ 13.6\\ 12.5\\ 14.6\\ 12.5\\ 14.6\\ 12.5\\ 14.6\\ 12.5\\ 16.9\\ 12.8\\ 12.3\\ \end{array}$	 355 ACPF 2 ACPF 4 ACPF 0 ACPF 2 ACPF 4 ACPF 0 ACPF 353 ACPF 355 ACPF 355 ACPF 1 ACPF 355 ACPF 16 ACPF 17 ACPF 8 ACPF 0 ACPF 351 ACPF 354 ACPF 354 ACPF 354 ACPF 354 ACPF 355 ACPF 355 ACPF 355 ACPF 	

20140706	1951	1	186	2	37.5	65	50.98	168	6.93 %	MBSn7	14.5	18 ACPF			
20140706	2000	1	187	1	28.7	65	50.86	168	5.09 %	MBSn8	12	10 ACPF			
20140706	2002	1	187	2	28.9	65	50.88	168	5.06 %	MBSn8	13.5	20 ACPF	END OF MBSn line		
20140706	2244	1	188	1	45.4	65	48.31	168	55.461 %	BS11	11.5	319 RJD	START OF BS line E bound		
20140706	2247	1	188	2	45.1	65	48.304	168	55.35 %	BS11	10.9	320 RJD			
20140706	2255	1	189	1	46	65	47.814	168	53.817 %	BS11j	11.7	323 RJD			
20140706	2258	1	189	2	46.2	65	47.799	168	53.709 %	BS11j	12.2	326 RJD			
20140706	2307	1	190	1	42.7	65	47.267	168	51.67 %	BS12	12.2	321 RJD			
20140706	2309	1	190	2	42.9	65	47.295	168	51.606 %	BS12	13.3	318 RJD			
20140706	2318	1	191	1	47.5	65	46.854	168	49.714 %	BS12AJ	12.2	325 RJD			
20140706	2321	1	191	2	47.6	65	46.909	168	49.636 %	BS12AJ	12.4	320 RJD			
20140706	2331	1	192	1	50	65	46.365	168	47.656 %	BS13	14.4	329 RJD			
20140706	2333	1	192	2	50.1	65	46.389	168	47.6 %	BS13	15.7	328 RJD			
20140706	2344	1	193	1	49.1	65	45.858	168	45.547 %	BS132	13.5	338 RJD			
20140706	2346	1	193	2	50.2	65	45.872	168	45.565 %	BS13Z	15.3	351 RJD			
20140706	2357	1	194	1	51.3	65	45.295	108	43.245 %	BS14	17.1	332 RJD			
20140706	2359	1	194	2	51.1	65	45.304	168	43.182 %	BS14 BS14	17.2	330 RJD			
20140707	0 10	1	195	2	50.5	65	44.029	169	41.504 %	DS14J DS14J	10	227 DIA			
20140707	10	1	195	1	50.3	65	44.033	160	20 924 %	DS14J	10.4	241 PID			
20140707	21	1	190	2	50.2	65	44.330	168	39.824 %	B315 B\$15	17.5	341 NJD 336 RID			
20140707	31	1	197	1	50.2	65	43.836	168	37 64 %	BS15	14.9	337 RID			
20140707	33	1	197	2	50.2	65	43 853	168	37 572 %	BS155	16.9	336 RID			
20140707	43	1	198	1	49.9	65	43 276	168	35 492 %	BS16	16.8	340 RID			
20140707	46	1	198	2	49.9	65	43.276	168	35.456 %	BS16	16.9	340 RJD			
20140707	55	1	199	1	50.3	65	42.768	168	33.388 %	BS16J	17.2	330 RJD			
20140707	58	1	199	2	50.4	65	42.784	168	33.329 %	BS16J	16.3	340 RJD			
20140707	107	1	200	1	53.7	65	42.241	168	31.325 %	BS17	11.7	350 RJD			
20140707	110	1	200	2	53.5	65	42.276	168	31.2 %	BS17	13.8	342 RJD			
20140707	120	1	201	1	51.9	65	41.716	168	29.234 %	BS17S	14.2	352 RJD			
20140707	122	1	201	2	51.9	65	41.751	168	29.132 %	BS17S	15.3	347 RJD			
20140707	132	1	202	1	52.3	65	41.192	168	26.962 %	BS18	14.2	353 RJD			
20140707	135	1	202	2	52.5	65	41.213	168	26.922 %	BS18	13.8	350 RJD			
20140707	144	1	203	1	51	65	40.802	168	25.243 %	BS18J	12.6	348 RJD			
20140707	147	1	203	2	51.3	65	40.833	168	25.203 %	BS18J	13.6	350 RJD			
20140707	156	1	204	1	50.2	65	40.366	168	23.485 %	BS19	14.5	354 RJD			
20140707	158	1	204	2	50.2	65	40.396	168	23.448 %	BS19	14.6	356 RJD			
20140707	209	1	205	1	48.9	65	39.862	168	21.296 %	BS19H	11.3	359 RJD			
20140707	212	1	205	2	49.1	65	39.914	168	21.264 %	BS19H	13.1	350 RJD			
20140707	224	1	206	1	47.1	65	39.339	168	19.06 %	BS20	13.2	352 RJD			
20140707	226	1	206	2	47.1	65	39.382	168	19.036 %	BS20	13.7	352 RJD			
20140707	237	1	207	1	44.6	65	38.938	168	17.061 %	BS20J	13.4	353 RJD			
20140707	239	1	207	2	44.8	65	38.977	168	17.071 %	BS20J	13.6	348 RJD			
20140707	249	1	208	1	40.7	65	38.551	168	15.04 %	BS21	12.2	357 RJD			
20140707	251	1	208	2	40.7	65	38.587	168	15.05 %	BS21	13.7	350 RJD			
20140707	304	1	209	1	37.5	65	38.044	168	13.003 %	BS21A	13.4	6 atn			
20140707	306	1	209	2	37.6	65	38.077	168	13.025 %	BS21A	12.5	1 atn			
20140707	319	1	210	1	30.5	65	37.502	168	10.779 %	B522	12.4	/ atn			
20140707	321	1	210	2	30.5	65	37.530	168	10.791 %	B322	11.8				
20140707	338	1	211	1	29.1	65	35.994	168	9.785 %	B323 D\$22	16.5	34 KJU 20 RID			
20140707	540 400	1 1	211	2 1	29.3	65	3/ 02/	160	9.85 % 7 164 %	BS2/	14.b	סנא טכ 12 חום	This is the same as SBS1		
20140707	400	1	212	1 2	25	65	34.934	169	7.104 %	BS24	24.1		FND of line BS		
20140707	402	1	212	<u>د</u> 1	20.0	65	34.555	162	11 006 %	SBC2	10 5	22 atn	REGIN of line SRS		
20140707	421	1	213	2	27	65	33.222	160	11 97/ %	SBS2	19.5	22 aui 8 atn	DEGIN OF INC 3D3		
20140707	443	1	213	ے 1	42.6	65	32 962	168	16 765 %	SBS2	19.5	9 atn			
20140707	445	1	214	2	42.8	65	32.968	168	16 767 %	SBS3	17.2	356 atn			
20140707	506	1	215	<u>د</u> 1	47	65	31 981	168	21 555 %	SB54	10.1	4 atn			
20140/0/	500	-	-13	1		05	51.501	100	21.333 /0	5054	19.1	- 000			
20140707	508	1	215	2	47	65	31.985	168	21.531 %	SBS4	19.7	348 atn			
----------	-----	---	-----	---	------	----	--------	-----	----------	------	------	---------	-----------	--	--
20140707	528	1	216	1	58.1	65	31.007	168	26.391 %	SBS5	18.9	11 atn			
20140707	531	1	216	2	58	65	31.011	168	26.391 %	SBS5	18.2	359 atn			
20140707	550	1	217	1	59.3	65	30.002	168	31.27 %	SBS6	17	8 atn			
20140707	553	1	217	2	59.3	65	29.986	168	31.22 %	SBS6	18.2	355 atn			
20140707	612	1	218	1	54.8	65	29.041	168	36.113 %	SBS7	18.5	4 atn			
20140707	615	1	218	2	54.9	65	29.037	168	36.112 %	SBS7	17.9	352 atn			
20140707	636	1	219	1	55.2	65	28.047	168	40.999 %	SBS8	18.8	352 atn			
20140707	638	1	219	2	55.1	65	28.025	168	41.106 %	SBS8	17.2	5 atn	STOP here		