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ABSTRACT - DRAFT

Seven current meters representing four models were placed for an 11 month deployment

on a stiffly buoyed mooring to intercompare their velocity measurements: two VMCMs, two

Aanderaa RCM11s, two Aanderaa SEAGUARDSs, and a Nortek Aquadopp. The current

meters were placed 6 m apart from each other at about 4000 m depth in an area of Drake

Passage expected to have strong near-bottom currents, that were nearly independent of

depth. Two high-current events occurred in bursts of semi-diurnal pulses lasting several

days, one with peak speeds up to 67 cm s−1 and the other above 35 cm s−1. The current

speed measurements all agreed within about 5% when vector-averaged over simultaneous

time intervals: the full time interval (198 days) when all instruments were working, and the

two high-speed events lasting 21 days and 7 days. The VMCMs, chosen as the reference

measurements, were found to measure the median of the mean-current magnitudes. The

RCM11 and SEAGUARD current speeds had a nearly 1:1 relationship with the median.

They agreed within 2% at higher speeds (35–70 cm s−1), whereas in lower speed ranges (0–

35 cm s−1) the vector-averaged speeds for the RCM11s and SEAGUARDS were, respectively,

4–5% lower and 3–5% higher than the median. The Aquadopp current speeds were about

7% higher than the VMCMs over the range (0–40 cm s−1) encountered through their shorter

common time period.
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1 Introduction

We report here on results of an opportunity to compare current measurements from

three different-model acoustic Doppler single-height current meters and the vector mea-

suring current meter (VMCM) [Weller and Davis , 1980], which we judged to be standardly

characterized by preceding tow-tank tests. This new comparison was conducted on a moored

deployment, because for acoustic Doppler current sensors, a calibration test in a tow-tank

is not suitable due to acoustic reflections off the side walls. For reasons summarized below,

our chief aim was to obtain comparisons at speeds in excess of 35 cm s−1, and we are pleased

to report on records with observed current speeds spanning up to 70 cm s−1 (67 cm s−1)

uncorrected (corrected).

A broad review of modern current measuring techniques has been given in Dickey et al.

[1998]. Comparisons between the VMCM and other acoustic Doppler current measurements

have been performed utilizing a surface mooring known as the Bermuda Testbed Mooring,

as summarized by Gilboy et al. [2000].

Hogg and Frye [2007] conducted extensive tests between the Aanderaa RCM11 acoustic

Doppler current sensor, and conventional vector averaging and vector measuring current

meters (VACM and VMCM) and found that the RCM11 recorded consistently lower speeds

than the conventional current meters. Their tests were limited to conditions with current

speeds less than about 35 cm s−1. Within that low-speed range, personal communications

with Hogg suggested that a speed-correction factor of 1.1 should be applied to the RCM11

speeds.

Weller (personal communication) tested RCM11s against VMCMs off the northern coast

of Chile beneath an air-sea flux buoy in the upper 300 m of the water column. Maximum

speeds were below 40 cm s−1, and in contrast to the preceding case, the speed-correction

factor did not differ significantly from 1.0. Weller’s results suggested that the RCM11 tilt

sensor should be turned off, because it was on a surface mooring with substantial mooring

motions (accelerations) that may affect a tilt sensor. In addition the upper water column

may have had significant vertical shear. So the test gave evidence that speeds agreed between

VMCMs and RCM11s (without tilt compensation), but it was inconclusive regarding high

current regimes.

Drozdowski et al. [2010] at BIO-DFO-Halifax intercompared five current meter models

(SEAGUARD, Teledyne RDI Doppler Volume Sampler (DVS), RCM8, RCM11 and 300 kHz

Teledyne RDI ADCP) on a shallow mooring deployed for three weeks on the Scotian Shelf

in 2008. The current speeds observed were less than 40 cm s−1. BIO subsequently deployed

the same instruments for a year in water deeper than 1500 m also on the Scotian Shelf, but
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again the speeds were less than 26 cm s−1 [Drozdowski and Greenan, 2012].

Houk and Johns (unpublished manuscript) compared data from three different models of

single-point acoustic Doppler current meters (a Nortek Deep-Water Aquadopp, a Teledyne

RDI DVS and an Aanderaa SEAGUARD) from an 18-month deployment (December 2009

- April 2011). They found that differences between measurements were close to expected

uncertainties, but also found a slight bias in speed and direction in the Aquadopp compared

to the DVS and SEAGUARD. The bias increased slightly with increasing current speed.

The results of several recent intercomparison studies with SEAGUARDS are summarized

in Victoria [2011].

During the first-year (2007–2008) deployment in cDrake (http://www.cDrake.org), RCM11

current meter sensors located 50 m above the seafloor on CPIES observed several high-speed

current events [Chereskin et al., 2009]. Events with peak speeds of 60–70 cm s−1 typically

lasted a week or more at a suite of sites within the Local Dynamics Array, which had been

centered upon an eddy kinetic energy hot-spot at the sea surface. The question naturally

arose whether a speed-correction factor should be applied to the RCM11 at these speeds.

We received NSF funding for an approximately one-year deployment of a short near-

bottom mooring in the cDrake Local Dynamics Array, that would compare two RCM11s,

two VMCMs, two Aanderaa ZPulse RCMs on SEAGUARD data loggers, and a Nortek

Deep-Water Aquadopp. These current meters were placed as close together as operationally

practical with nominal 6 m separation; their heights ranged 98 m to 136 m above the seafloor

to avoid the benthic boundary layer. A site was chosen where weak stratification indicated

vertical shear should be negligible. Hence they should all observe the same current. The

logistics were relatively simple because we already had cruises and personnel scheduled for

cDrake operations. Other advantages of conducting this comparison in the deep ocean were

that a short deep mooring could be designed to reduce tilt and mooring motion for these

expected high currents, and it would avoid near-surface hazards such as biofouling, ice, and

fishing/trawling activities.
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2 Mooring Design

Our mooring design used established procedures and hardware components, plus special-

ized low-drag buoyancy described below (Figure 1). We sought a balance between

1. placing instruments more than 3 m apart to avoid spurious side-lobe acoustic reflections

off mooring components and with at least 5 m wire between them to enable individual

handling during launch and recovery, versus

2. achieving minimal mooring motion and tilt in strong currents by using short wire

lengths and low-drag components.

Seven current meters representing four different models were on the mooring: two Aan-

deraa RCM11s, two Aanderaa SEAGUARD ZPulse RCMs, two VMCMs and one Nortek

Deep-Water Aquadopp (Figure 1). The RCM11s were located at levels 1 (no tilt correc-

tion) and 4 (tilt correction), the VMCMs at levels 2 and 6, the SEAGUARDs at levels 3

(tilt correction) and 5 (no tilt correction), and the Aquadopp was at level 7 (Table 1). All

current meters were nominally separated by 6 m, all maintained close together to produce

measurements of nearly the same currents.

All buoyancy was at the top of the mooring, starting with three 17-inch glass spheres on a

radio-flasher relocation aid. Next, twelve glass flotation spheres were housed in six OpenSeas

Instrumentation, Inc., shells, called Streamlined Underwater Buoyancy System (SUBS). Each

SUBS shell holds two standard 17-inch glass spheres. For equivalent buoyancy, the SUBS

produce roughly one-quarter the drag of customary chained clusters of glass spheres in hard

hats. All main lengths of mooring line were 3/16 inch jacketed wire rope. At the bottom of

the mooring were dual ORE 8242 acoustic releases and a 2000 lb cast iron anchor.

The RCM11s, VMCMs, and Aquadopp were provided and prepared by the Woods Hole

Oceanographic Institution. The SEAGUARDs were loaned and prepared by Aanderaa Data

Instruments Incorporated. Final checkouts and startup were performed aboard ship prior to

launch.

The start and end times aboard ship for the current meters are listed in Table 1. The

sampling interval for the VMCMs was set to one minute, all other current meters were set

to 30 minutes. A summary of current meter specifications is given in Table 2.

The following subsections provide current meter model specific and deployment details.
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2.1 Aanderaa RCM11

The RCM11s were configured to record four channels: channel 1 is a reference, while

channels two through four are respectively current speed, current direction and temperature.

Currents were measured in spread mode: during the 30-minute measurement interval, the

instrument transmitted 600 evenly distributed pings. u and v are averaged over the sampling

interval and from the resulting averages, speed and direction are calculated. The time stamp

occurs at the end of the measurement interval.

Alkaline batteries (15 Ah battery power) were used in the RCM11s. Upon return, we

learned that the high ping rate and 30-minute sampling interval selected should have re-

sulted in only 248 days (8.3 months of the 11 month deployment) of data according to the

manufacturer’s specifications. In fact, the RCM11s recorded for about a month and a half

longer than the battery calculation predicted. If a 30 Ah lithium battery would have been

used the instruments would have sampled for the entire deployment period.

2.2 VMCM

The VMCM [Weller and Davis , 1980] has two orthogonal cosine-response impeller sensors

that measure the components of horizontal current velocity along the rotation axes of each

impeller. The orientation of the instrument chassis relative to magnetic north is determined

by a flux-gate compass. A lubber line and a pin in the rotor/impeller assembly aligns the

impeller geometry to the chassis and compass. East and north components of velocity are

computed nearly continuously with each 1/4 turn of the impeller; these are averaged and

then stored on flash memory cards. An averaging interval of one minute was used for data

recorded in this study.

Following are additional notes from Bob Weller and his engineers.

1. Speed Calibration:

The speed calibration is 2.67 propeller revolutions per meter of flow. With 4 counts per

revolution, 1 count = 10 cm of flow.

2. Stall speeds:

There are magentodiodes inside the rotor hubs; each diode has a ferritic flux concentrator so

there is magnetic attraction between the magnets in the encoder on the impeller shaft and

the magnetodiodes. There is a magnetic force that preloads the ball bearings and increases

threshold speed for flow parallel to rotor axles to ≈ 2.5 cm s−1. With cosine angular response,

if the flow is off axle and the prop is not moving, break-free occurs at a higher speed. This

sometimes has been observed on deep quiet subsurface moorings.

3. Rotor-blocking Diagnostics:
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At each [quarter-turn] count, the cosine and sine are computed and stored; the compass is

updated [at a more rapid rate for that purpose]. The impellers up-count and down-count, so

there is a sign associated with counts R1 and R2. At end of 1 minute the accumulated vector

contributions from rotor 1 and rotor 2 give a 1-min vector average u and v. The number of

quarter-revolutions of each impeller, R1 and R2 counts, also get recorded as diagnostics. (If

one rotor is stopped due to fishing line, a u and a v would still have been recorded from one

rotor, but you would not have known they were wrong if you did not also record rotor count

totals for the minute.)

4. Tilt compensation:

With the original compass, tilt was not measured. With newer models, tiltx and tilty are

measured and recorded as the last reading each minute (Allsup, personal communication).

Nevertheless, lateral acceleration may affect tilts, so Weller never pressed for firmware to do

tilt correction.

The method we used to apply a tilt correction is described in Section 4, where we show

that tilt correction brought the speed records from all instruments into substantially im-

proved agreement.

The TCM2-20 is spec’d to 20 degrees tilt, but it performs up to 22-to-26 degrees tilt, and

the maximum logged value by the VMCM firmware is 25.5 degrees. The tiltx maximum for

VMCM 002 reached 25.5, so at first we were concerned that the tilt may have exceeded that

value, and might have been chopped to the maximum logged value of 25.5. The total tilt

plot (see Figure 5) of the SEAGUARD neighboring above it looks consistent, indicating that

if chopping occurred for VMCM 002, it was not appreciable. The Aquadopp that neighbored

below it had quit before that maximum-tilt event.

2.3 Aanderaa SEAGUARD RCM

The SEAGUARD dataloggers were equipped with ZPulse multi-frequency Doppler cur-

rent sensors (DCS), plus pressure, conductivity, and oxygen sensors (Table 3). Each of those

sensors has its own temperature measurement. The SEAGUARDs were powered by lithium

batteries.

The DCS, pressure, conductivity, and oxygen sensors were verified aboard ship prior to

launch. The 150 ohm test-resistor was looped through the conductivity sensor during the

first sample for both instruments, and the conductivity registered correctly about 31.

SeaGuard Studio version 1.5 software was used. The system-configuration wizard con-

firmed the following settings for both instruments: number of pings is 300 (equivalent to

600, accounting for the two frequencies transmitted in each ping). Both SEAGUARDs were
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configured in ‘burst mode’ (300 pings in the last 60 seconds of the recording interval). The

time stamp occurs at the end of the measurement interval. The recorded currents are the

vector average of each burst measurement.

Sound speed is 1500 m s−1. Start distance is 0.5 m, and cell size is 1.5 m; hence the

acceptance window for reflections extends from 0.5 m to 2.0 m. Transducer activation was

set to 1-and-3 for the x-axis, 2-and-4 for the y-axis, and forward ping active was selected,

meaning that positive Doppler shifts were analyzed from unperturbed water approaching the

sensor. Tilt correction was enabled for the upper SEAGUARD (SN 137), but ‘off’ for the

lower one (SN 136).

2.4 Nortek Aquadopp

The Aquadopp was mounted pointing downward on this mooring. Tilt is automatically

compensated in the Aquadopp software. The maximum sampling rate is 23 Hz. For this

deployment, the measurement load was set to 4% (0.92 Hz) and the burst averaging interval

was set to 120 seconds. This yields 110 samples (0.92 Hz * 120 seconds) in a 2-minute average.

The time stamp occurs at the start of the burst-averaging interval. The measurement interval

for burst-sampling was 1800 s (30 min). The compass update rate is two seconds. The

recorded currents are the vector average of each burst measurement. Current is compensated

for a variable speed of sound, which is calculated from measured temperature and a constant

salinity of 35 ppt. Current speed, calculated in post-processing by the Aquadopp software

(version 1.31 used here), differs slightly from the vector-averaged (u, v) speed. Deepwater

velocity scaling was not applied to the speed value. Newer versions of the software (> version

1.36) correct for this difference.

Alkaline batteries were installed in the Aquadopp. Using the Nortek battery budget, the

Aquadopp should have sampled for 13 months. However, it only recorded for nine months.

The batteries in the Aquadopp were depleted, although battery consumption estimates in-

dicated that the current meter should have sampled for the full deployment period, with

adequate reserve energy. We surmise that the batteries may have been subjected to high

temperatures during shipment from Rhode Island by surface through Los Angeles (in Au-

gust), and subsequently by container to Punta Arenas, Chile.

2.5 Deployment

The mooring, designated M04, was deployed on 24 November 2009 at 56.55◦S, 62.15◦W

in the cDrake Local Dynamics Array (Figure 2). The mooring took 45 minutes to reach

the seafloor, at which time we communicated with the two releases and confirmed that the
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mooring stood upright.

After an 11-month deployment, recovery began on 28 October 2010 when the mooring

was released at 1620 UTC. The mooring rise rate was about 32 m min−1, which was much

slower than expected. Upon recovery it was discovered that two glass balls had broken.

Two of the SUBS buoys had one broken glass ball each (two broken balls total). Both

broken balls were in the front ends of the buoys. The glass looked broken by impact rather

than imploded at high pressure. A high-pressure implosion would have ripped open the

plastic shell of the SUBS. We do not think the glass balls were broken in the course of the

launch, because the operations proceeded without apparent impacts. So we infer that the

glass balls were cracked prior to deployment, during shipping and handling in 2009.

Upon recovery we discovered that the radio/flasher battery was dead. We think that

its battery was drained because the mooring (with partially lost buoyancy) tilted enough to

trigger its mercury tilt-switch and repeatedly reactivated the radio/flasher ball during the

strong eddy events throughout the year. A mercury tilt-switch is not adequate for future

deployments at high-current sites.

The current meters and releases looked in great condition upon recovery except for alu-

minum corrosion around the top of the VMCM housings, not affecting measurements. The

SUBS black plastic ‘vanes’ showed significant damage; many of the vanes were broken or

chipped.
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(3) 17" Glass Balls + Radio/Flasher 
 5 m  chain

2 Open Seas SUBS

2 Open Seas SUBS

2 m  chain

2 Open Seas SUBS

10 m  jacketed wire rope

Aanderaa RCM11 (no tilt correction)

5 m  jacketed wire rope

VMCM 

5 m  jacketed wire rope

Aanderaa SeaGuard (tilt correction)

5 m  jacketed wire rope

Aanderaa RCM11 (tilt correction)

5 m  jacketed wire rope

Aanderaa SeaGuard (no tilt correction)

5 m  jacketed wire rope

VMCM 

5 m  jacketed wire rope

Aquadopp (facing downward)

65 m  jacketed wire rope

Dual-BACS releases 

30 m  (chain/nylon/chain)

Anchor - 2000 lb cast iron 

2 m  chain

SN 153

SN 069
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111
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Figure 1: Mooring schematic. Numbers to the left of the current meter serial numbers are
heights above the ocean bottom (m).
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Figure 2: Location of mooring (M04) in the cDrake array is indicated by the red trian-
gle. Black triangles indicate the locations of CPIES sites. Bathymetry derives from Smith
and Sandwell (1997) contoured every 1000 m depth. Colors transition from tans represent-
ing shallow depths to light and darker blues representing successively greater depths. See
Chereskin et al. [2009] for details of the cDrake experiment.
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Level Type SN Start Date End Date Sampling Averaging
Start Time End Time Interval Interval

(min) (min)
1 Aanderaa RCM11 153 19 Nov 09 last good data 30 30 (spread)

tilt correction off 12:00 18 Sept 10
2 VMCM 069 19 Nov 09 6 Nov 10 1 1

16:08 15:49
3 Aanderaa SEAGUARD 137 18 Nov 09 31 Oct 10 30 1 (burst)

tilt correction on 19:59:45 02:01:28
4 Aanderaa RCM11 143 19 Nov 09 last good data 30 30 (spread)

tilt correction on 12:00 14 Sept 10
5 Aanderaa SEAGUARD 136 18 Nov 09 31 Oct 10 30 1 (burst)

tilt correction off 18:53:20 02:24
6 VMCM 002 19 Nov 09 6 Nov 10 1 1

15:39 14:49
7 Aquadopp 1395 18 Nov 09 last data 30 2 (burst)

21:35:47 20 Jun 10

Table 1: Timing information for full records, from startup prior to deployment until last data
record. All times are UTC. The Aquadopp stopped recording in June 2010 due to battery
failure, and both RCM11s stopped recording in September 2010 due to improper power
consumption calculations. (See Table 4 for on-bottom times.) Sampling interval refers to
the time between samples. Averaging interval refers to the time during which measurements
are made.
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RCM11 VMCM SEAGUARD Aquadopp

Manufacturer Aanderaa WHOI Aanderaa Nortek

Firmware N/A VMCM2 V3.10 1.4.33 1.21

Current Speed

Type Acoustic (Doppler) Mechanical Acoustic(Doppler) Acoustic (Doppler)
Range (cm s−1) 0 to 300 2 to 400 0 to 300 0 to 300
Accuracy (cm s−1) ±0.15 or ± 1% ± 1% ±0.15 or ± 1% ±0.5 or ± 1%
Resolution (cm s−1) 0.3 0.17 .01 .01

Direction
3-axis

Type Hall-element Flux-gate solid-state Magnetometer
compass magneto-resistor

Model TCM2-20 Nortek
Accuracy (◦) ±5◦ (0 to 15◦ tilt) ±3◦ ±5◦ (0 to 15◦ tilt) ±2◦(tilt < 20◦)

±7◦(15 to 35◦ tilt) ±7.5◦(15 to 35◦ tilt)
Resolution (◦) 0.35◦ ±0.1◦ .01◦ 0.1◦

Temperature

Type Thermistor Thermistor
Range (◦C) -3.01 to 5.92 ◦C -4 to 36◦C -4 to 40◦C

Arctic
Accuracy (◦C) ±0.05 ◦C 0.01◦C ±0.03◦C 0.1◦C
Resolution 0.1% of range 0.001◦C 0.01◦C

Length (mm) 595 2560 368 625
Weight (kg) 26.5 34.5 15.7 7.6

Table 2: Current meter specifications. Further information for the SEAGUARD can be found
at www.aadi.no/Aanderaa/Document%20Library/1/Data%20Sheets/Seaguard%C2%AE%20
RCM.pdf and for the Aquadopp at www.nortekusa.com/lib/data-sheets/datasheet-
aquadopp-6000m.
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SEAGUARD SN 137 136
Z-pulse DCS SN 245 244
Pressure SN 247 249
Conductivity SN 230 255
Oxygen SN 158 157

Table 3: Serial numbers for Anderaa SEAGUARD sensors. Both instruments were configured
for burst mode. SN 137 (SN 136) was configured with tilt correction on (off).
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3 Data Return, Clock Drift, Conversion to Scientific

Units

3.1 Data Return

Current measurements were made during a 337 day period from 24 November 2009 to 28

October 2010 with the VMCMs and SEAGUARDs. For reasons noted earlier, the Aquadopp

data record ended in June 2010, and the two RCM11s records ended in September (Figure

3 and Table 1). Ten days prior to the end of the Aquadopp record, the sampling interval

began alternating between 12 and 30 minutes, leading us to truncate those final 10 days of

Aquadopp data.

All data sets were truncated to retain only the interval when the mooring was anchored to

the seafloor (Table 4). Timebases in decimal days referenced to January 2009 were assigned.

The RCM11 instruments exhibited 2-minute drifts internally and their sampling intervals

were adjusted to account for the drifts. The VMCMs had drifts of 7–8 minutes, based

upon rotor spin-times recorded and compared to logged UTC. The time associated with the

last record was changed to agree with UTC aboard ship, and their sampling intervals were

adjusted. Further details of the clock drift adjustments for the RCM11s and VMCMs are

given below. The SEAGUARD clocks did not drift more than a few seconds, so no timing

corrections were made. We could not quantify clock drift for the Aquadopp by comparison

with UTC aboard ship. However, by subsequent comparison with the SEAGUARD data

(treated in Section 3.4) we estimate the Aquadopp clock drift to be 8 minutes.

Equivalent clock drifts were calculated as ∆t
t

where ∆t is the difference between the actual

sampling interval and the nominal sampling interval (30 minutes for RCM11s, SEAGUARDs,

and Aquadopp and 1 minute for VMCMs) and t is the nominal sampling interval (Table 4).

All data variables recorded in the raw files are listed in Table 5. No corrections have been

made for magnetic declination for the intercomparison purposes of this report. All records

would have identical declination.

The SEAGUARD at level 3 (SN 137) reported a mean signal strength of -52.4 dB, with

standard deviation of 4.0 dB. The SEAGUARD at level 5 (SN 136) had similar signal values,

respectively -51.3 dB and 4.3 dB.

3.2 RCM11 Clock Drift

Data files include one time stamp line from the Data Module clock each day; these

times were assumed to be correct because both RCM11 instruments ended early, preventing

comparison with UTC at recovery. The last records indicated the RCM11 clocks had drifted
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by ± 2 minutes. Thus, the sampling time intervals were not exactly 30 minutes and were

adjusted as folllows.

The first on-bottom record was determined by knowing the time when the anchor settled

on the seafloor, and was confirmed by examining the temperature time series. The last

on-bottom record was the last measurement, because the records ended early. The date and

time of the first and last on-bottom records were determined from the recorded time-stamps

of the Data Module.

SN 143 had a sampling-time drift two minutes later for the last record than for the first

record, when each is compared to the Data Module daily time stamp (Table 6). The sampling

interval was increased from 30 minutes to 30.0001415 minutes (as detailed in the table) to

account for this drift.

SN 153 had a sampling-time drift two minutes earlier for the last record than for the

first record, when each is compared to the Data Module daily time stamp (Table 7). The

sampling interval was decreased from 30 minutes to 29.9998607 minutes (as detailed in the

table) to account for this drift.

3.3 VMCM Clock Drift

WHOI provided us with MATLAB mat-files of the VMCM data records. These in-

struments had 60 second (1 minute) sampling intervals. Clock drifts of 7–8 minutes were

determined by comparing the logged event times (rotor spins, release from the bottom, etc)

with those recorded in the instruments. Sampling intervals were adjusted to account for the

drifts, as follows:

SN002 had an 8 minute clock drift so the time of the last on-bottom record was changed

to agree with the logged information (Table 8). The sampling interval was changed from 1

minute to 1.00001644 minutes.

SN069 had a 7 minute clock drift so the time of the last on-bottom record was changed

to agree with the logged information (Table 9). The sampling interval was changed from 1

minute to 1.000014385 minutes.

3.4 Aquadopp Clock Drift

The Aquadopp data ended early and its clock could not be compared with UTC upon

recovery. After initial processing it was observed that the standard deviation of differences

from VMCM records was a bit high. We suspected clock drift. We tested whether assumed

drifts of 1 minute intervals from -13 to 5 minutes improved the covariance with the near-zero

clock-drifts of the SEAGUARDs. The covariance with both SEAGUARDs was greatest at
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an assumed clock drift of -8 minutes. The Aquadopp sampling interval was then changed

from 30 minutes to 29.9992 minutes.

3.5 Conversion to Scientific Units

RCM11s record integer counts in the range 0-to-1023, which are converted to scientific

units using the following equations and the (A,B,C,D) coefficients listed in Table 10:

Speed = A+B ∗ countsspeed (1)

Direction = A+B ∗ countsdir (2)

Temperature = A+B ∗ countsT + C ∗ countsT 2 +D ∗ countsT 3 (3)

The VMCM records were converted to scientific units in the initial processing step by

WHOI. The SEAGUARD and Aquadopp do the conversions to scientific units internally.
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Figure 3: Top black line: Time series of VMCM SN 069 speed (cm s−1). The VMCM SN 069
time base has been corrected for clock drift. Bottom colored lines: length of data records for
individual current meters. The lines are plotted in order of vertical level on the mooring.
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Level Type SN Start Start Date End End Date No. Records Clock
DD Start Time DD End Time Length (hrs) Drift (∆t

t )
1 Aanderaa RCM11 153 327.7694 11/24/09 625.9139 9/18/10 14312 -4.6 E-6

tilt correction off 18:28:00 18:21:56 7156
2 VMCM 069 327.7564 11/24/09 665.6807 10/28/10 486605 14.4 E-6

18:09:15 16:20:15 8110
3 Aanderaa SEAGUARD 137 327.7719 11/24/09 665.6677 10/28/10 16220 -12 E-12

tilt correction on 18:31:28 16:01:28 8110
4 Aanderaa RCM11 143 327.7701 11/24/09 621.3132 09/14/10 14091 4.7 E-6

tilt correction on 18:29:00 07:30:59 7045
5 Aanderaa SEAGUARD 136 327.7671 11/24/09 665.6630 10/28/10 16220 -23 E-12

tilt correction off 18:24:41 15:54:41 8110
6 VMCM 002 327.7564 11/24/09 665.6807 10/28/10 486604 16.4 E-6

18:09:15 16:20:15 8110
7 Aquadopp 1395 327.7540 11/24/09 535.0508 06/20/10* 9962 -26.7 E-6

18:05:47 01:13:06 4981

Table 4: Serial number, start and end times for on bottom records, number of records and
record length in hours and equivalent clock drift. All times are UTC. DD refers to decimal
days referenced to 1 January 2009. Four of the seven currents meters (2 VMCM and 2
SEAGUARD) returned full data sets for the entire 11 month deployment. The Aquadopp
stopped recording in June 2010 and both RCM11s stopped recording in September 2010.

* Note: For comparison purposes the last 10 days of the Aquadopp record were trun-
cated because the sampling interval alternated between 12 and 30 minutes during this
period.
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Level Type SN Speed Direction U, V Temp Compass Tilt Prs
1 Aanderaa RCM11 153 X X X

tilt correction off
2 VMCM 069 X X X X

3 Aanderaa SEAGUARD 137 X X X X X X X
tilt correction on

4 Aanderaa RCM11 143 X X X
tilt correction on

5 Aanderaa SEAGUARD 136 X X X X X X X
tilt correction off

6 VMCM 002 X X X X

7 Aquadopp 1395 X X X X X

Table 5: Variables recorded by current meters. The tilt recorded by the SEAGUARDs is
the last tilt measured during the sampling interval, not the average tilt. For the VMCMs
tilt is the last reading for each minute. Although RCM11 SN 143 applied an internal tilt
correction, neither RCM11 recorded tilt.

On-bottom Date Time (UTC) Record number Decimal Day 2009
first record 24 Nov 2009 18 29 00 254 327.770138
last record 14 Sep 2010 07 31 00 14344 621.31319

Number of Records Elapsed Days
14091 293.5431

Elapsed Minutes
422701.99488

Sampling interval = elapsed minutes / (nrec-1) = 422701.994888/14900 = 30.0001415

Table 6: RCM11 SN143 timing information for determining clock drift.

On-bottom Date Time (UTC) Record number Decimal Day 2009
first record 24 Nov 2009 18 28 00 254 327.776944
last record 18 Sep 2010 21 56 00 14565 625.913889

Number of Records Elapsed Days
14312 298.1444

Elapsed Minutes
429328

Sampling interval = elapsed minutes / (nrec-1) = 429328/14311 = 29.9998607

Table 7: RCM11 SN153 timing information for determining clock drift.
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event date log time instrument time offset
released 28 Oct 2010 1620–1621 1612 7–8 mins

rotor spins 6 Nov 2010 1425–1429 1417–1421 8 mins
battery unplugged 6 Nov 2010 1449 1441 8 mins

On-bottom Date Time (UTC) Record number Decimal Day 2009
first record 24 Nov 2009 18 09 15 7359 327.75642
last record 28 Oct 2010 16 20 15 493962 665.68073

Number of Records Elapsed Days
486604 337.92431

Elapsed Minutes
486611

Sampling interval = elapsed minutes / (nrec-1) = 486611/486603 = 1.00001644

Table 8: VMCM SN002 timing information for determining clock drift.

event date log time instrument time offset
released 28 Oct 2010 1620–1621 1614 7–8 mins

rotor spins 6 Nov 2010 1533–1535 1526–1528 7 mins
battery unplugged 6 Nov 2010 1549 1542 7 mins

On-bottom Date Time (UTC) Record number Decimal Day 2009
first record 24 Nov 2009 18 09 15 7317 327.75642
last record 28 Oct 2010 16 20 15 493921 665.68142

Number of Records Elapsed Days
486605 337.925

Elapsed Minutes
486612

Sampling interval = elapsed minutes / (nrec-1) = 486611/486604 = 1.000014385

Table 9: VMCM SN069 timing information for determining clock drift.
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RCM11 SN 143 153
Speed Coefficients

A 0 0
B 0.2933 0.2933

Direction Coefficients
A 0 0
B 0.3516 0.3516

Temperature Coefficients
A -3.057 -3.006
B 0.009113 0.00895
C -3.476e-007 -3.476e-007
D 1.134e-010 1.134e-010

Table 10: Calibration coefficients for RCM11s, for equations 1, 2 and 3 in Section 3.5.
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4 Data Processing

4.1 Raw Data

We will start by examining the data prior to corrections for sound speed and tilt. The

time stamps had been adjusted for clock drift, as described previously, which is an essential

step for comparing simultaneous measurements.

The raw data show similar u and v components, as illustrated in the two highest-speed

50-day segments (Figure 4 (days 335–385) and Figure 5 (days 535–585)). Maximum speeds

of approximately 48 cm s−1 were recorded between days 335 and 385 (Figure 4) for all seven

current meters. Maximum speeds of approximately 70 cm s−1 were recorded between days

565 and 572 (Figure 5) for six of the current meters; the Aquadopp record ended on day 535

prior to this highest-speed event.

During the period common to all instruments, mean current speeds were approximately

9 cm s−1 directed to the northwest (Figure 6 top left and Table 11). The current direction

of the Aquadopp and VMCM SN 069 were turned, respectively, 6◦ and 3◦ to the left of the

median of all the current meters. The direction on VMCM SN 002 was turned about 8◦ to

the right of the median. The RCM11 and SEAGUARD pairs recorded mean directions that

agreed within 1 degree of their same-model partner, and all four clustered within 2 degrees

of the median.

The VMCM, SEAGUARD and RCM11 pairs recorded mean speeds that ageed within

1% with their same-model partner. The two VMCMs were at the median speed of all seven

current meters. The two SEAGUARD mean speeds were about 4% higher than the median.

The two RCM11 mean speeds were about 6% lower than the median (Figure 6 top left and

Table 11). The raw Aquadopp mean current speed was higher than the median by about

7%. We will comment upon these observed speed and angle differences after data corrections

for tilt and sound speed.

Pressure was measured by the SEAGUARDs and Aquadopp (Figure 7a). The largest

draw-down of the mooring (45 m) occurred during the highest current event recorded between

days 565 and 572. In four other events the draw down was 20 m, but in most events the

draw down was less than 10 m.

4.2 Data Corrections

Next we compare the same-model instruments within the three model pairs to verify

their consistency, i.e., VMCM 002 with VMCM 069, RCM11 143 with RCM11 153, and

SEAGUARD 136 with SEAGUARD 137. We subsequently inter-compare the four model
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types. A number of data corrections were made in preparation for these comparisons, as will

be detailed in the next few subsections:

1. sound speed is corrected for the Doppler type instruments that used a constant sound

speed (RCM11s and SEAGUARDs);

2. a tilt correction is applied to the current meters that were not configured to internally

correct for tilt (both VMCMs, RCM11 153, and SEAGUARD 136);

3. the one-minute VMCM data are 30-minute low-pass filtered;

4. all data are expressed in components (u, v) for temporal interpolation to a synchronous

30-minute time base (UTC times, 00 and 30 minutes after each hour). Speed and

direction are re-calculated afterwards.

After these corrections were made, the vectors were replotted (Figure 6, lower left) and

statistics were recalculated (Table 12). Data for the two highest speed events were also

examined in detail (right side of Figure 6 and Tables 13-14).

4.2.1 Sound Speed

The RCM11s and SEAGUARDs had been configured to use a constant nominal sound

speed (1500 m s−1) to calculate current velocity. The Aquadopp obtains the speed of sound

by assuming a nominal salinity (set to 35.0 ppt here) and uses a look-up table to determine

the sound speed based on the measured temperature. A data conversion function in the

Aquadopp firmware calculates the speed of sound using the pressure data and corrects the

velocities by applying a scale factor. In the Aquadopp header file the “sound speed” is the

speed of sound initially used by the instrument when measuring, while the “sound speed

used” is the pressure-corrected speed of sound used to correct the velocities in the data

conversion.

The temperature records of all the CMs are consistent with each other and with four

CTDs near beginning and end of the records (Figure 8 top). Temperature measurements all

agreed within 0.04◦C of the median of the mean temperatures (Table 11), well within the

expected accuracy (Table 2).

Sound speed time series were calculated using the SEAGUARDs’ pressure and temper-

ature measurements and assuming a salinity of 35 ppt for comparison with the Aquadopp

record. All three sound speed records were consistent within 0.5 m s−1 of each other and

with those calculated from the (S, T, P ) measured by the four CTDs at the beginning and

end of the deployment (Figure 8 bottom). The total range of variation during the 11 months

was 2 m s−1 , and that occurred at about the same time as the biggest current event.

23



Using the Doppler formula, an error in sound speed δC produces an error in current speed

δU where

δU =
δC

C
× U (4)

The mean sound speed for the Aquadopp for days 327 to 525 was 1521.2 m s−1. A mean

value C=1521 m s−1 is representative of all the data.

If we use constant C=1521 m s−1, then |δC| < 2 m s−1, and for Umax = 70 cm s−1 then

δU =
2

1521
× 70 cm s−1 = 0.09 cm s−1 (5)

which is a negligible error of 0.1%. We therefore used a constant C=1521 m s−1 for the

RCM11s and SEAGUARDSs and scaled their current speeds larger by approximately 1.4%

as follows

current speedcorrected = current speedmeasured ×
1521 m s−1

1500 m s−1
(6)

4.2.2 Tilt

RCM11 SN 143, SEAGUARD SN 137, and the Aquadopp current meter were configured

for internal tilt correction. Tilt was recorded by the VMCMs, SEAGUARDs and Aquadopp,

but not by the RCM11s (Table 5). Recall that the tilt-magnitude records were plotted in

Figures 4 and 5, where tilt can be seen to systematically increase from the upper to lower

current meters, as is consistent with the design of the mooring.

To apply a tilt correction to the records from the two VMCMs, RCM11 SN 153 and

SEAGUARD SN 136, we calculated the tilt magnitude (φ) as

φ = arctan
√

tan2(tiltx) + tan2(tilty) (7)

where tiltx and tilty are the tilts recorded by the current meters.

Figure 7b shows the total tilt φ for both VMCMs. Mooring tilt and tilt difference were

largest (≈ 25◦, 10◦ respectively) during the high speed event (days 565–572).

The tilt-compensated speed, speedc, was calculated as

speedc =
speed

cosφ
(8)

where of course the φ and speed time series must be synchronous. These are intrinsically

synchronous for the VMCMs and the SEAGUARD, which record tilt and currents every

measurement interval. The synchronization procedure for the RCM11 153 is described next.

This method of speed adjustment for tilt works well for this short mooring with closely
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spaced current meters, because the direction of flow was essentially independent of depth at

the heights of the seven current meters, so the drag and direction of tilt were assumed to be in

approximately the the same direction. Consequently, the above correction for tilt magnitude

was applied to speed, rather than attempting to correct individual velocity components for

each respective component of tilt.

For RCM11 153 at level 1 which did not record tilt we used φ calculated at level 2

for VMCM 069 in Equation 8. Subsection 4.2.4 describes how this synchronization was

tailored to RCM11 153. This would be a slight overestimate of tilt for level 1, and the cosine

correction factor would be only 1% different (cos(6)/ cos(10) = 1.010 ) during even the most

extreme tilt events. This would have tended to exaggerate the RCM11 153 highest speeds

by 1%. For speeds less than 40 cm s−1 the total tilt correction increases the RCM11 153

speed by less than 0.4%, and the associated overestimate is less than 0.2%.

Details about tilt. For the RCM11, when set to internally correct for tilt, the current

meter applies the tilt correction to every single ping based on the high frequency tilt measure-

ments (Victoria, personal communication). The SEAGUARD on the other hand measures

tilt at 35 kHZ, calculates an average at 1 Hz, and then applies the correction based on this

average to the last second of data. However, the tilt value reported by the SEAGUARD is

only the last tilt measured during the sampling interval, not the average tilt, so it may not

be representative of the entire interval. Later versions of the SEAGUARD firmware correct

this by providing additional tilt statistics to the QA data list. Therefore tilt compensation

that we applied in post-processing may be slightly different from what the SEAGUARD does

when compensating for tilt on its own (Victoria, personal communication).

For VMCMs the compass and rotors are read once per second to build a 1-minute vector

average. However, the recorded tilt data is the last reading of each minute (Allsup, personal

communication).

4.2.3 Lowpass filtering

The VMCM data were recorded at one-minute intervals. A fourth order lowpass Butter-

worth filter with a cutoff period of 30 minutes was applied to the VMCM u and v records.

The filter was run forward and backward to eliminate phase offsets and data were output at

1-minute resolution.

For the other three models, whose sampling interval was 30 minutes, the preliminary

data comparisons use unfiltered records. Later to determine if filtering improved the inter-

comparisons all data were 3-hr low pass filtered.
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4.2.4 Synchronization and Interpolation

To facilitate intercomparison, it was necessary to synchronize the u and v timebases. This

was accomplished in two steps. First, the recorded time stamps were shifted to correspond

to the midpoints of the respective averaging intervals (see Table 1) for each model type. For

the RCM11s, the time stamps occurred at the end of each sample. These times were shifted

by -15 minutes to center them on the midpoint of each 30-minute-spread sample. Likewise,

the Aquadopp time stamp occurred at the beginning of each 2-minute burst measurement

and was thus shifted +1 minute to center it. No time shifts were made to the SEAGUARD

(1-minute measurement interval). Second, the records for all models were interpolated to a

common set of 30-minute intervals at 0 and 30 minutes UTC after the hour.

When interpolating onto a common time base, it is essential to work with current com-

ponents (u, v) data, not speed and direction (U, θ), because a 360-to-0 degree wrap in angle

θ does not interpolate to an intermediate value. Speed and direction were subsequently

calculated from the interpolated u and v data.

As stated above, the RCM11 153 tilt correction was applied using the tilt measured by

the neighboring VMCM 069, and so the tilt angles also required time synchronization. For

VMCM 069 the tilt magnitudes φ range between 0 to 10 degrees; hence straightforward

interpolation applied because they do not wrap through 0/360. The VMCM 069 tilts were

averaged in the 30 minutes prior to the RCM11 153 time stamp to correspond to the averaging

period of RCM11 153.

4.3 Excising rotor stalls

For special cases of comparison described below, in order to tightly restrict current com-

parisons to times with no rotor stalls, we have excised all 30-minute intervals within which

any one of the four VMCM rotors stalled for even a single 1-minute interval. For those pur-

poses, the VMCM data were block-averaged for only the stall-free 30-minute intervals. The

numbers of rotor stalls for the VMCMs have been tabulated in Table 15. Extra panels have

been added to some figures in the following sections, as noted in their captions, to illustrate

the improvement by excising rotor stalls.
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Level Type SN Prs u v Speed Direction Temp Ratio
(dbar) (cm s−1) (cm s−1) (cm s−1) (◦) (◦C)

1 RCM11 153 -5.26 6.66 8.48 321.7 0.96 1.06
tilt correction off

2 VMCM 069 -5.96 6.74 9.00 318.5 0.92 1.00

3 SEAGUARD 137 4016.2 -5.55 7.42 9.27 323.2 0.93 0.97
tilt correction on

4 RCM11 143 -5.40 6.57 8.50 320.6 0.96 1.06
tilt correction on

5 SEAGUARD 136 4028.7 -5.73 7.44 9.39 322.4 0.93 0.96
tilt correction off

6 VMCM 002 -4.43 7.61 8.80 329.8 0.89 1.02

7 Aquadopp 1395 4030.8 -6.75 7.01 9.73 316.1 0.94 0.93

Median 9.00 321.7 0.93

Table 11: Time-averaged statistics for the common time period (days 327–525). Clock
drift corrections have been applied to the VMCM, RCM11 and Aquadopp time bases. The
velocities are uncorrected for sound speed, and only corrected for tilt if done internally as
noted in column 2. u (zonal velocity) and v (meridional velocity) are vector averaged. Speed
and direction were calculated from the vector-averaged u and v. Direction is clockwise from
magnetic north. Values correspond to vectors plotted in top left of Figure 6. The bottom
row lists the median of the mean values in the column above it. The last column is the ratio
of that median of mean speeds to each respective mean speed.
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Figure 4: Top: Time series of u (blue) and v (red) velocities in cm s−1 for days 335–385.
The shallowest current meter (RCM11 153) is plotted with no offset. Velocities for successive
current meters are offset by 100 cm s−1. Clock drift corrections have been applied to the
VMCM, RCM11 and Aquadopp time bases. All 7 current meters were operating during
this time period. Middle: Time series of total tilt for tilt-recording current meters. The
shallowest tilt record is plotted with no offset, and successively deeper tilt records are offset
by 10◦. Bottom: Stick plot of VMCM 069 3-hr lowpass filtered velocity.
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Figure 5: Time series of u (blue) and v (red) velocities in cm s−1 for days 535–585. The
shallowest current meter (RCM11 153) is plotted with no offset. Velocities for successive
current meters are offset by 150 cm s−1. Clock drift corrections have been applied to the
VMCM, RCM11 and Aquadopp time bases. This time period was captured by 6 of the 7
current meters and included the strongest recorded currents. Middle: Time series of total
tilt for tilt-recording current meters. The shallowest tilt record is plotted with no offset, and
successively deeper tilt records are offset by 20◦. Bottom: Stick plot of VMCM 069 3-hr
lowpass filtered velocity.
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Figure 6: Time averaged velocity vectors. Top left: common time period (days 327–525).
Clock drift corrections have been applied to the VMCM, RCM11 and Aquadopp time bases.
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The Aquadopp used a variable speed of sound calculated from measured temperature and
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Figure 7: Pressure in dbar for SEAGUARDs and Aquadopp (a), VMCM tilts as labeled (b),
and speed (blue) and speed difference (red) for VMCM (c), RCM11 (d) and SEAGUARD
(e) current meters. All records have been corrected for sound speed and tilt and interpolated
to a common 30-minute timebase. The VMCM data were 30-minute lowpass filtered.
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Level Type SN Prs u v Speed Direction Temp Ratio
(dbar) (cm s−1) (cm s−1) (cm s−1) (◦) (◦C)

1 RCM11 153 -5.34 6.76 8.61 321.7 0.96 1.05
tilt correction off

2 VMCM 069 -5.97 6.75 9.01 318.5 0.92 1.00

3 SEAGUARD 137 4016.2 -5.63 7.52 9.40 323.2 0.93 0.96
tilt correction on

4 RCM11 143 -5.47 6.66 8.62 320.6 0.96 1.05
tilt correction on

5 SEAGUARD 136 4028.7 -5.82 7.55 9.54 322.4 0.93 0.94
tilt correction off

6 VMCM 002 -4.43 7.63 8.82 329.8 0.89 1.02

7 Aquadopp 1395 4030.8 -6.75 7.01 9.73 316.1 0.94 0.93

Median 9.01 321.7 0.93

Table 12: Time-averaged statistics for common period (days 327–525). Data have been
corrected for sound speed and tilt and interpolated to a common 30-minute timebase. The
VMCM data were 30-minute lowpass filtered. u (zonal velocity) and v (meridional velocity)
are vector averaged. Speed and direction were calculated from the vector-averaged u and v.
Direction is clockwise from magnetic north. Values correspond to vectors plotted in bottom
left of Figure 6. The bottom row lists the median of the mean values in the column above it.
The last column is the ratio of that median of mean speeds to each respective mean speed.
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Level Type SN Prs u v Speed Direction Temp Ratio
(dbar) (cm s−1) (cm s−1) (cm s−1) (◦) (◦C)

1 RCM11 153 -9.37 10.92 14.39 319.4 0.97 1.04
tilt correction off

2 VMCM 069 -10.79 10.70 15.20 314.8 0.90 0.98

3 SEAGUARD 137 4018.9 -9.91 11.13 14.91 318.3 0.93 1.00
tilt correction on

4 RCM11 143 -9.97 10.38 14.39 316.1 0.96 1.04
tilt correction on

5 SEAGUARD 136 4031.5 -11.11 11.22 15.79 315.3 0.93 0.94
tilt correction off

6 VMCM 002 -8.30 12.08 14.66 325.5 0.85 1.02

7 Aquadopp 1395 4033.3 -11.64 11.13 16.11 313.7 0.93 0.93

Median 14.91 316.1 0.93

Table 13: Time-averaged statistics for the first high speed event (days 361–382). Data have
been corrected for sound speed and tilt and interpolated to a common 30-minute timebase.
The VMCM data were 30-minute lowpass filtered. u (zonal velocity) and v (meridional
velocity) are vector averaged. Speed and direction were calculated from the vector-averaged
u and v. Direction is clockwise from magnetic north. Values correspond to vectors plotted
in top right of Figure 6. The bottom row lists the median of the mean values in the column
above it. The last column is the ratio of that median of mean speeds to each respective
mean speed.

34



Level Type SN Prs u v Speed Direction Temp Ratio
(dbar) (cm s−1) (cm s−1) (cm s−1) (◦) (◦C)

1 RCM11 153 -12.07 32.81 34.96 339.8 0.70 1.03
tilt correction off

2 VMCM 069 -12.60 34.41 36.64 339.9 0.67 0.98

3 SEAGUARD 137 4035.3 -10.31 34.21 35.73 343.2 0.66 1.01
tilt correction on

4 RCM11 143 -11.76 33.78 35.77 340.8 0.68 1.01
tilt correction on

5 SEAGUARD 136 4047.3 -10.61 34.57 36.17 342.9 0.65 0.99
tilt correction off

6 VMCM 002 -6.06 36.86 37.35 350.7 0.62 0.96

Median 35.97 341.9 0.66

Table 14: Time-averaged statistics for highest speed event (days 565–572). Data have been
corrected for sound speed and tilt and interpolated to a common 30-minute timebase. The
VMCM data were 30-minute lowpass filtered. u (zonal velocity) and v (meridional velocity)
are vector-averaged. Speed and direction were calculated from the vector-averaged u and v.
Direction is clockwise from magnetic north. Values correspond to vectors plotted in bottom
right of Figure 6. The bottom row lists the median of the mean values in the column above
it. The last column is the ratio of that median of mean speeds to each respective mean
speed.

Level VMCM 1-min values % of total 1-min values % of total 1-min values % of total
SN rotor1==0 rotor2==0 r1 or r2 ==0

2 069 20763 4.3% 32226 6.6% 47669 9.8%
6 002 26243 5.4% 5724 1.2% 30105 6.2%

Table 15: Number of VMCM rotor stalls. The total number of VMCM 069 (002) 1-minute
values is 486605 (486604). There were 16,220 30-minute VMCM block averages of which
4754 (29.3%) were excised due to rotor stalls in any of the four rotors.
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5 Results and Comparisons

5.1 Spectra

Spectra of u and v components are calculated and displayed two different ways. Note

the spectra were calculated before the data were interpolated to a common time base (i.e,

prior to step 4 in Section 4.2). The variance-conserving form in Figure 9 used the Welsh

method with window length 1392 points (29 days) applied to the full record lengths (different

for different instruments), to produce well-resolved spectral peaks and distinguish the tidal

peaks and the local inertial period (14.4 hr at latitude 56.55◦S). The two highest peaks are

the semidiurnal tide (1/12.42 h = 0.08 h−1) and the inertial peak at 1/14.4h = 0.07 h−1;

a quarter-diurnal tide peak and a broader peak near 10-to-2 days are also evident. The

long-period spectra differ among the four panels because the records spanned different time

intervals.

Our main interest here focuses upon the instruments. In order to compare the measure-

ment noise-floors of the seven records during their common time period, the log-log form of

spectral density in Figure 10 used the Welsh method with one-quarter the window length,

348 points (7.25 days), to produce more smoothing from ensemble-averaging. At periods

shorter than 3 hours the spectral slope flattens where an apparent measurement noise floor

exceeds the high frequency signal variance of currents at this location.

The measurement noise levels of the instruments are listed in Table 16. Internal tilt

correction was turned off for both RCM11 153 and SEAGUARD 136; tilt for these two

current meters was corrected by Equation 8. Thus within each of these two pairs of same-

model instruments, the noise floor was the same regardless of whether the tilt correction

was done internally or calculated in post processing. To compare their noise variance, which

appeared to be isotropic, all the records were 3-hour high-pass filtered and their eddy kinetic

enery, EKE<3hr is tabulated in Table 16. The VMCMs had the lowest noise floor. The

RCM11s and SEAGUARDs have somewhat higher noise floors and the Aquadopp had the

highest.

36



10
−2

10
−1

10
0

0

50

100

150

200

250

300

350

(c
m

 s
−1

)2

VMCM

 

 

u 069
v 069
u 002
v 002

10
−2

10
−1

10
0

0

50

100

150

200

250

300

350

(c
m

 s
−1

)2

Seaguard

 

 

u 137
v 137
u 136
v 136

10
−2

10
−1

10
0

0

50

100

150

200

250

300

350

Frequency (h −1)

(c
m

 s
−1

)2

RCM11

 

 

u 153
v 153
u 143
v 143

10
−2

10
−1

10
0

0

50

100

150

200

250

300

350

Frequency (h −1)

(c
m

 s
−1

)2

Aquadopp

 

 

u 1395
v 1395

Figure 9: Variance preserving plots of spectra of full record length u and v velocities, as
labeled. All records have been corrected for sound speed and tilt. The VMCM data were
30-minute lowpass filtered. A window length of 1392 points (29 days) was used for the
spectra.
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Figure 10: Spectral densities of u and v velocities for the common time period (days 327–
525), as labeled. All records have been corrected for sound speed and tilt. The VMCM data
were 30-minute lowpass filtered. A window length of 348 points (7.25 days) was used.
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Level Type SN NSD EKE<3hr Internal Tilt
(cm/s)2/h−1 (cm2s−2) Correction

1 RCM11 153 0.45 0.44 No
2 VMCM 069 0.30 0.33 No
3 SEAGUARD 137 0.45 0.45 Yes
4 RCM11 143 0.45 0.45 Yes
5 SEAGUARD 136 0.45 0.46 No
6 VMCM 002 0.30 0.33 No
7 Aquadopp 1395 0.70 0.67 Yes

Table 16: Measurement noise levels. NSD is the noise spectral density obtained from the
high frequency ‘tails’ of the spectra in Figure 10.

5.2 Current Meter Same-Model Pair Comparisons

Time series of speed and speed differences for the same-model current-meter pairs are

shown in Figure 7c (VMCM), 7d (RCM11) and 7e (SEAGUARD). Data corrections 1 to 4

(Section 4.2) have been applied to these time series. In one event around days 565–572 the

peak speeds reached 67 cm s−1. In that event the tilt of the lowest current meter reached

about 25 degrees and the upper part of the mooring pulled down about 40 m (Figure 7a).

A close comparison of these same-model pairs is provided by scatter plots for current-

direction measurements in Figure 11, and for current-speed measurements in Figure 12.

Directions differ the most when speeds are less than 5 cm s−1 (red dots in Figure 11),

especially for the VMCMs. The dots in the upper left and lower right corners in Figure 11

arise from the normal amount of scatter about the one-to-one line accounting for the wrap

from 360-to-0 degrees.

The VMCM 002 direction, which was offset from the median by 8 degrees, differs from a

straight line constant offset from VMCM 069. The offset depends on angle; note the slight

curvature of the cloud of black dots relative to the line with unity slope. The apparent

dependence on speed (Figure 11) may be indirect, because the speeds at this location were

not isotropically distributed but tended to be higher or lower in certain directions. During

shipboard setup, the battery for VMCM 002 was initially plugged in with the wrong polarity

and a resistor burned out. A replacement resistor was found and soldered in VMCM 002. It

is possible that during reassembly the compass was inadvertently turned or the momentary

high current when the battery was attached incorrectly caused a magnetic field that polarized

something in or near the compass. VMCM compass deviation pre- and post-deployment are

shown in Figures 13 and 14. VMCM 002 shows nothing so large as an 8 degree change from
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pre- to post-deployment as might have been expected if the compass had been magnetized

when the battery shorted. However, because the compass of VMCM 002 disagrees with the

other instruments, we have selected VMCM 069 for further comparisons with other-model

current meters. The other current directions generally agreed well, i.e., within their typical

specifications of 5 degrees, for speeds greater than 10 cm s−1, and all cases of substantially

larger disagreement occurred for speeds less than 5 cm s−1.

The speed comparisons (Figure 12), which are the focus of this study, agree well within

same-model pairs. VMCM speeds agree with unity slope within 1%. The standard deviation

difference in VMCM speed measurement was 1.06 cm s−1 (see Table 17 which includes

different model pair comparisons also). The same-model speed comparisons for SEAGUARD

measurements agree with unity slope within 2%, and standard deviation difference scatter

was 0.79 cm s−1. The RCM11 measurements agree with unity slope within 2% and rms

difference 0.90 cm s−1. We show later (Figure 27) that standard deviations have a minimum

around 0.5 cm s−1 and increase roughly in proportion to vertical separation distance on

the mooring. The statistics shown in Figure 12 panels were derived as follows: For each

30-minute pair of measurements the ratio of speeds was calculated if both exceeded a speed

threshold,

r =

[
speedcmu > st

speedcml > st

]
(9)

where st is the lower speed threshold (5 or 10 cm s−1) and cmu and cml refer to the upper

and lower current meters of each model type. The mean ratio and standard error of that

mean are then determined,

µst = r̄ (10)

and

ermean =
std(r)√
(n− 1)

(11)

Scatter plots of the difference in current direction (deep direction − shallow direction)

are plotted versus speed of the deeper current meter of each pair in Figure 15. The red

asterisks in Figure 15 are the median direction difference calculated for 2 cm s−1 bins.

The fourth (lower left) panel in each of Figures 11, 12, and 15 re-compares the VMCM

data after excising all 30-minute intervals in which any one of the four rotors stalled for

even one minute. Table 15 shows that individual rotors stalled during 1% -to- 7% of the

1-minute sample intervals, presumably depending mainly upon orientation of the current

meter housing on the mooring. The fraction of 30-minute intervals unaffected by any stall of

any single rotor during any 1-minute subinterval was greater than 70%. The slightly curved

deviation from constant angle offset remains the same (Figure 11), and most notably the
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scatter is greatly reduced in direction differences, which had been largest for low current

speeds. The VMCM current speeds continue to agree with unity slope within 1% (Figure

12).

Time series of speed and direction difference for days 535 to 585 are shown in Figures 16

and 17. These figures reemphasize that the current angles exhibit least scatter when current

speeds are high.
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Figure 11: Scatter plots of current direction for same model current meter pairs. Red dots
correspond to speeds <= 5 cm s−1, cyan to speeds > 5 cm s−1 and <10 cm s−1, and black
to speeds >=10 cm s−1. VMCM data in lower left panel have had all rotor stalls excised.
Gray line has a slope of one.
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Figure 12: Scatter plots of current speed for same model current meter pairs. All records
have been corrected for sound speed and tilt. Top left: VMCM 30-minute lowpass filtered
and interpolated to common 30-minute timebase. Bottom left: VMCM 30-minute block
averaged with rotor stalls excised. Top right: RCM11. Bottom right: SEAGUARD. RCM11
and SEAGUARD were interpolated to common 30-minute timebase. The gray line has a
slope of one. The red line is the fit to the data. The slope and intercept of the red line and
their confidence intervals are listed in the upper left corner of each plot. The statistics listed
in the lower right corner of each plot are described in Section 5.2 where the subscripts 5 and
10 refer to the lower speed threshold used in error calculations.
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Figure 13: Pre-deployment VMCM compass deviation.

Figure 14: Post-deployment VMCM compass deviation.
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Figure 15: Scatter plots of the difference in current direction versus speed of the deeper
current meter of each same model pair. All records have been corrected for sound speed
and tilt. The asterisks represent the median difference calculated for 2 cm s−1 bins. Top
left: VMCM 30-minute lowpass filtered and interpolated to common 30-minute timebase.
Bottom left: VMCM 30-minute block averaged with rotor stalls excised. The mean direction
difference (6.1◦) for block averaged data is shown by the gray line. Top right: RCM11.
Bottom right: SEAGUARD. RCM11 and SEAGUARD were interpolated to common 30-
minute timebase. The standard deviations of the angle differences for speeds greater than
5 cm s−1 and 10 cm s−1 for filtered VMCM data are 7.9◦ and 6.1◦, for RCM11s 4.9◦ and
3.8◦ and for SEAGUARDS 4.6◦ and 3.7◦ respectively. The standard deviations for block
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Figure 16: Time series of speed (panels 1, 3 and 5) and direction difference (panels 2, 4 and
6) for same model current meters pairs for days 535–585. All records have been corrected
for sound speed and tilt and interpolated to a common 30-minute timebase. The VMCM
data were 30-minute lowpass filtered.
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Figure 17: Same as Figure 16 except all records were 3-hour lowpass filtered.
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5.3 Current Meter Different-Model Comparisons

We chose one representative from each of the current meter models for these intercom-

parisons. The instruments chosen were VMCM 069, RCM11 153, SEAGUARD 136 and

Aquadopp 1395. VMCM 069 was chosen because the compass of VMCM 002 differed from

the other instruments. Either RCM11 and either SEAGUARD could have been chosen for

further intercomparison between models. We chose RCM11 153 and SEAGUARD 136 for

which tilt corrections were post processed consistently with VMCM 069.

Time series of the four different current meter types, zoomed-in for 25 days during the

first large-current event, are compared in Figure 18. These records have applied the four

corrections listed in Section 4.2 (sound speed; tilt; 30-minute lowpass filtering VMCM; inter-

polation to common time base.) The speeds appear so similar that it is difficult to distinguish

them in this plot. Closer comparison can be provided by the following plots and statistics.

A close comparison for current-direction measurements of the different-model pairs is

provided by the six scatter plots in Figures 19 and 20, for current speed measurements in

Figures 21 and 22, for direction difference as a function of speed in Figures 23 and 24 and for

speed difference as a function of time in Figures 25 and 26. These plots all use the maximum

coincident time series available for each respective pair of instruments. As noted earlier, the

dots in the upper left and lower right corners in Figures 19 and 20 arise from the normal

amount of scatter about the one-to-one line accounting for the wrap from 360-to-0 degrees.

The curvature that was evident in comparing direction for the two VMCMs, 069 and 002, is

absent here, offering further evidence that the problem lies with 002 and not 069.

Judged by the slopes of the scatter plots (Figure 21), the RCM11 153 speeds are 5% lower

than VMCM 069 (slope 0.94), 9% lower than the Aquadopp (slope 1.09), and essentially the

same as SEAGUARD 136 (slope 1.00).

The scatter plots of the difference in current direction versus speed for one current meter

of each pair (Figures 23 and 24) all exhibit similar amounts of direction-scatter, and in all

cases the direction-scatter decreases with increasing current speed. Direction for VMCM 069

is offset a few degrees to the left (2◦–4◦) of the RCM11 and SEAGUARD, and a few degrees

to the right of the Aquadopp, consistent with the time-mean vector comparison (Figure 6).

Direction for the Aquadopp is a few degrees to the left of all other instruments, and the

RCM11 and SEAGUARD directions agree within about 1 degree with each other, again

consistent with the time-mean vector comparisons.

At first impression, the time series of speed differences between current meters (Figures 25

and 26) emphasize that a fairly constant offset persists over the whole span of measurements.

Referring back to the overall speed time-series plot (Figure 3) this accords with the speeds

remaining fairly steady, oscillating around 5–20 cm s−1, for most of the deployment. Only by
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close inspection can the speed bias at high currents be discerned in these time series at the

two high-speed events, highest near day 565–572 and the second-highest near days 361–382.

The time-mean and standard deviations of speed differences for the common time pe-

riod (days 327–525) are listed in Table 17. The speed-difference standard deviations range

between 0.7-to-1.5 cm s−1 between most pairs, owing partly to real turbulent velocity dif-

ferences between locations on the mooring. The speed differences are also compared after

3-hour lowpass filtering each record (Table 18) in order to remove that part of their variance

that was strongly influenced by measurement noise-floor (see Section 5.1). However the stan-

dard deviations were only reduced by a relatively small amount. The standard error of the

mean differences would be about 0.02 cm s−1, as estimated by std/
√

(DOF ), where DOF

is degrees of freedom, with 9456 independent measurements at half-hour intervals during

the common time period. The means of the half-hourly speed-differences (summarized from

Table 17) are usually more than twice as large as the differences of vector-mean current

magnitudes (Table 12). This may arise because noise in individual components (u, v) aver-

ages to zero, but adds to mean speed (u2 + v2)
1
2 . The “noise floor” of measurement alone is

insufficient to account for the difference. So part of the speed difference is oceanic (discussed

later with Figure 27), and part arises from sampling-time differences as next discussed.

The two VMCM mean speeds agreed with each other within 0.43 cm s−1 (Table 17).

The two RCM11 mean speeds agreed with each other within 0.06 cm s−1, and are on average

over the common time period:

• (0.77 + 0.38 + 0.30 + 0.69)/4 = 0.5 cm s−1 lower than the two VMCMs,

• (1.74 + 2.00 + 1.68 + 1.94)/4 = 1.8 cm s−1 lower than the two SEAGUARDs,

• (2.15 + 2.09)/2 = 2.1 cm s−1 lower than the Aquadopp.

The two SEAGUARD mean speeds agreed with each other within 0.26 cm s−1 (Table 17)

and are about

• (0.99 + 1.38 + 1.24 + 1.63)/4 = 1.3 cm s−1 higher than the two VMCMs,

• (0.41 + 0.15)/2 = 0.3 cm s−1 lower than the Aquadopp.

The Aquadopp speed mean was about

• (1.40 + 1.79)/2 = 1.6 cm s−1 higher than the two VMCMs.

The finding that within same-model pairs the speed agreement is very good (0.43, 0.06,

0.26 cm s−1) compared to different-model pairs (ranging 0.15 to 2.15 cm s−1) suggests that

some of the difference arises from sampling differences within each half-hour. This idea is
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supported by the fact that among the two lowest standard deviations of speed-differences be-

tween different-model pairs (Figure 25) are those pairs which sampled similarly: 0.94 cm s−1

for the VMCM-RCM11 which spread-sample vector averaged over the entire 30 minutes, and

1.12 cm s−1 for the SEAGUARD-Aquadopp which burst-sampled in a 1–2 minute vector av-

erage interval near the 00 and 30 minute marks. The high-frequency variability during 30

minutes can be estimated by 30-minute high-pass filtering the VMCM data, and that EKE

(0.33 to 0.45 cm2 s−2) is enough to account for about 0.6 cm s−1 sampling difference during

the 30-minute sampling.

Standard deviation of speed differences for 3 hr low-pass filtered data and with the VMCM

rotor stalls excised are shown in Figure 26. The standard deviations are slightly smaller, but

the inferences appear to be unchanged.

The random scatter of differences between current speed measurements, summarized in

Tables 17 and 18, can be accounted for by the sums of variance:

• differences due to vertical separation (6m–30m) on the mooring (turbulence?): 0.15 to

0.50 cm2 s−2

• differences due to individual noise-floor estimates for EKE < 3hr in Table 16: 0.33 to

0.45 cm2 s−2

• differences due to spread versus burst sampling: ∼ 0.1 cm2 s−2
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Figure 18: Twenty-five day (360–385) time series of current speed. All records have been
corrected for sound speed and tilt and interpolated to a common 30-minute timebase. The
VMCM data were 30-minute lowpass filtered.

51



0 100 200 300
0

100

200

300

VMCM 069

R
C

M
11

 1
53

Direction

0 100 200 300
VMCM 069

S
ea

g
u

ar
d

 1
36

0 100 200 300
VMCM 069

A
q

u
ad

o
p

p
 1

39
5

0 100 200 300
0

100

200

300

RCM11 153

S
ea

g
u

ar
d

 1
36

0 100 200 300
RCM11 153

A
q

u
ad

o
p

p
 1

39
5

0 100 200 300
0

100

200

300

Seaguard 136

A
q

u
ad

o
p

p
 1

39
5

Figure 19: Scatter plots of current direction for different model pairs for all coincident data.
All records have been corrected for sound speed and tilt and interpolated to a common 30-
minute timebase. The VMCM data were 30-minute lowpass filtered. Red dots correspond
to speeds <= 5 cm s−1, cyan to speeds > 5 cm s−1 and <10 cm s−1, and black to speeds
>=10 cm s−1. Gray line has a slope of one.
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Figure 20: Same as Figure 19 except all records were 3-hour lowpass filtered.
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Figure 21: Scatter plots of current speed for different model pairs for all coincident data.
All records have been corrected for sound speed and tilt and interpolated to a common 30-
minute timebase. The VMCM data were 30-minute lowpass filtered. The gray line has a
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Figure 22: Same as Figure 21 except all records were 3-hour lowpass filtered.
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Figure 23: Scatter plots of the difference in current direction versus speed for all coincident
data. All records have been corrected for sound speed and tilt and interpolated to a com-
mon 30-minute timebase. The VMCM data were 30-minute lowpass filtered. The asterisks
represent the median difference calculated for 2 cm s−1 bins.
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Figure 24: Same as Figure 23 except all records were 3-hour lowpass filtered.
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All records have been corrected for sound speed and tilt and interpolated to a common
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RCM11 153 VMCM069 SG 137 RCM11 143 SG 136 VMCM002 AQD1395
RCM11 153 -0.77 -1.74 -0.06 -2.00 -0.38 -2.15

VMCM 069 0.94 -0.99 0.69 -1.24 0.43 -1.40

SG 137 0.90 0.72 1.68 -0.26 1.38 -0.41

RCM11 143 0.90 0.96 0.80 -1.94 -0.30 -2.09

SG 136 1.07 0.93 0.79 0.80 1.63 -0.15

VMCM 002 1.24 1.06 0.94 0.89 0.68 -1.79

AQD 1395 1.53 1.33 1.36 1.30 1.12 0.96

Table 17: Speed difference statistics. Speed differences (upper current meter speed minus
deeper current meter speed) in cm s−1 were calculated between all pairs. The mean and
standard deviation are tabulated respectively in upper right and lower left triangles. The
common time period (days 327–525) was used. All records have been corrected for sound
speed and tilt and interpolated to a common 30-minute timebase. The VMCM data were
30-minute lowpass filtered.

RCM11 153 VMCM069 SG 137 RCM11 143 SG 136 VMCM002 AQD1395
RCM11 153 -0.76 -1.69 -0.08 -1.98 -0.34 -2.12

VMCM 069 0.87 -0.93 0.68 -1.22 0.42 -1.35

SG 137 0.81 0.58 1.62 -0.28 1.35 -0.42

RCM11 143 0.77 0.94 0.80 -1.90 -0.26 -2.04

SG 136 1.01 0.74 0.58 0.84 1.64 -0.14

VMCM 002 1.14 0.85 0.44 0.92 0.52 -1.78

AQD 1395 1.49 1.10 1.16 1.31 0.91 0.82

Table 18: Same as Table 17 except all data were 3-hour lowpass filtered. This reduced the
standard deviations, and the means were essentially unchanged.
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5.4 Response Function Analyses

As an alternative to regression analyses, response functions were calculated between pairs

of current meters using their u and v current components. The window length selected for

these analyses was 100 points (50 hours) to smooth the response functions by averaging over

many ensemble members. At periods longer than 5 or 10 hours the smoothed admittance

magnitudes, |Admittance|, reached a plateau, near one (Figures 28-32 and Tables 19-20

which list the average admittance of u and v components for periods longer than 10 hours).

We also examined the results from longer windows and longer periods, such as 10 and 40

days (not included here), and verified that the plateau of |Admittance| extended to those

longer periods.

This analysis was first performed on the three same-model pairs for the common time

period (Figure 28). Their speed records were already known to be nearly identical, and

we wanted to examine at what higher range of frequencies the response functions differed

significantly from unity. For this analysis VMCM 002 direction was rotated 8 degrees to the

left and then speed and direction were converted back to u and v. At periods shorter than 5

days, the response magnitudes fall off rapidly to 0.2. We interpret that drop as a signature

of real differences in the turbulent currents between their nearby locations on the mooring.

The phase becomes noisy when the response magnitude drops.

Using the same procedure, we performed response analyses on different-model pairs for

both the common time period and the first high-speed event. (The first high-speed event

lasted 21 days and provided enough averaging of 50-hour ensemble members, but the later

highest-speed event only lasted 7 days, which was too short to produce smooth response

functions.) In these cases (Figures 29 - 32) the admittance magnitudes (|Admittance|)
reached plateaus further from unity than same-model pairs for long periods ( <5 to 10 days,

as above) indicating a current speed bias between the instruments. For the high-speed event

we were particularly interested to check whether the plateau heights remained the same as

for the weaker currents during the common time period. While they are bumpier due to less

averaging, the levels stay about the same, as listed for both intervals in Table 20.

The response admittance magnitudes basically agree with the results of speed-ratios,

and all these measures of relative current measurements are summarized in Table 22 and

discussed in the Summary.
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Figure 28: Phase (left) and Admittance (right) for same-model pair u and v components.
VMCM 002 direction was rotated 8 degrees to the left and converted back to u and v. Top:
VMCM, Middle: RCM 11, and Bottom: SEAGUARD.
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Figure 29: Phase (left) and Admittance (right) for different-model pair u and v components
for the common time interval. VMCM 069 is compared to: RCM11 153 (top), SG 136
(middle) , and Aquadopp (bottom).
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Figure 30: Phase (left) and Admittance (right) for different-model pair u and v compo-
nents for the common time interval. RCM11 153 versus SG 136 (top), RCM 11 153 versus
Aquadopp (middle), and Aquadopp versus SG 136 (bottom).
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Figure 31: Phase (left) and Admittance (right) for different-model pair u and v components
for the first high speed event (days 361–382). VMCM 069 is compared to: RCM11 153 (top),
SG 136 (middle) , and Aquadopp (bottom).
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Figure 32: Phase (left) and Admittance (right) for different-model pair u and v components
for the first high speed event (days 361–382). RCM11 153 versus SG 136 (top), RCM 11 153
versus Aquadopp (middle), and Aquadopp versus SG 136 (bottom).
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Current Meter Pair Admittance
VMCM 069/002 0.96
RCM11 153/143 1.00

SG 137/136 1.02

Table 19: Same-model low-frequency admittance for u and v components. Each pair of
numbers represents the common time interval (days 327–525).

RCM11 153 SG 136 AQD1395
VMCM 069 0.93 | 0.92 1.04 | 1.03 1.07 | 1.08

RCM11 153 1.11 | 1.08 1.14| 1.12

AQD 1395 0.96 | 0.96

Table 20: Different-model low-frequency admittance for u and v components. Each pair of
numbers represents the common time interval (days 327–525) | first high speed event (days
361–382).

5.5 Principal Component Analyses

Principal component analyses were carried out for two time periods: the common time

interval (days 327–525) and the highest speed event (days 565-573) using the matlab function

princomp. Table 21 lists the percent variance explained by the first three modes for the two

time periods.

The mean and mode vectors are plotted as a function of depth level for the common

time interval in Figure 33. Note VMCM SN 002 at level 6 appears anomalous and further

reinforces the decision to use VMCM SN 069 for inter-comparison purposes. Mode time

series are plotted in two different ways: amplitude and phase for modes one and two in

Figure 34 and real (u) and imaginary (v) components in Figure 35.

The above figure sequence is repeated in Figures 36-38 for the highest speed event.

Mode Common Time Period Highest Speed Event
Days 327–525 Days 565–572

1 99.4 98.8
2 0.2 0.8
3 0.2 0.2

Table 21: Percent variance explained from principal component analyses.
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Figure 33: Mean (left) and mode vectors (panels 2–4) for common time period (days 327–525)
as a function of current meter depth level. See Table 1 for level information.
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Figure 34: Time series of amplitude for modes one (panel 1) and two (panel 3) for the
common time period (days 327–525), phase is shown in panels 2 (mode 1) and 4 (mode 2).
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Figure 35: Real time series (u) for modes one (panel 1) and two (panel 3) for the common
time period (days 327–525), the imaginary time series (v) is shown in panels 2 (mode 1) and
4 (mode 2).
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Figure 36: Mean (left) and mode vectors (panels 2–4) for highest speed event (days 565–573)
as a function of current meter depth level. The Aquadopp (level 7) had stopped by this time.
See Table 1 for level information.
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Figure 37: Time series of amplitude for modes one (panel 1) and two (panel 3) for the highest
speed event (days 565–573), phase is shown in panels 2 (mode 1) and 4 (mode 2).

73



564 565 566 567 568 569 570 571 572 573 574
−100

−50

0

50

100

Mode 1 real(score)

High Speed Event (565−573)

(c
m

 s
−

1 )

564 565 566 567 568 569 570 571 572 573 574
−100

−50

0

50

100

Mode 1 imag(score)

(c
m

 s
−

1 )

564 565 566 567 568 569 570 571 572 573 574
−10

−5

0

5

10

Mode 2 real(score)

(c
m

 s
−

1 )

564 565 566 567 568 569 570 571 572 573 574
−10

−5

0

5

10

Mode 2 imag(score)

(c
m

 s
−

1 )

Days (2009)

Figure 38: Real time series (u) for modes one (panel 1) and two (panel 3) for the highest
speed event (days 565–573), the imaginary time series (v) is shown in panels 2 (mode 1) and
4 (mode 2).
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6 Summary

Current-speed measurements in general agreed well among all the instruments. Two

types of same time-interval comparisons were conducted:

1. Current speeds after vector-averaging over three separate time-intervals:

(a) a 198-day common time interval,

(b) a 21-day high-speed event, and

(c) a 7-day highest-speed event;

2. current-speed measurements at 30-minute sampling intervals:

(a) calculating the slopes of xy scatter-plots,

(b) calculating the means of their speed-difference time series, and

(c) calculating the average admittance magnitude for u and v components.

Item 2b is sensitive to how each sample is taken and whether it is spread-sampled or

burst-sampled within each 30-minute sampling interval. It accounts for the width of the

scatter-plots in method 2a.

The findings from comparisons (1a,b,c and 2a and c) are summarized in Table 22. The

low frequency and mean findings (1a, b, c and 2c) are summarized in its right hand column.

The three pairs of same-model current meters have consistent vector-averaged speeds

within 1%, and the departures are insignificant within model-type. The VMCMs are at the

median vector magnitude speed for all three time-intervals and speed-range measurements.

These median measurements of the currents are used for subsequent inter-model comparisons.

The RCM11s produced vector-mean speeds that were about 5% low in low-speed ranges

(average 9 and 15 cm s−1 for 198 d and 21 d) and agreed with the median VMCM records

within 2% for the highest-speed event, which had average currents greater than 35 cm s−1

averaged over 7 days. Consequently, while one may choose to increase the RCM11 speeds by

5% in the lower ranges, it is not appropriate to do so for the high range. The summary low

frequency speed-correction ratio (and its uncertainty) for RCM11s is 1.04 (−0.02/+ 0.03).

The SEAGUARDS produced vector-mean speeds that were 0% to 5% higher than the

median (VMCM) records in the different speed ranges. The slope of the scatter plot against

the VMCM indicates the bias (if any) decreases with increasing speed. The summary low

frequency speed-correction ratio (and its uncertainty) for SEAGUARDs is 0.97 (−0.02/ +

0.03).

The Aquadopp produced vector-mean speeds that were about 7% higher than the me-

dian (VMCM) records in both the common time interval and in the first high-speed event.

(Recall its battery had drained before the highest-speed event.) Because its fitted line on
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the scatter plot is about 1 cm s−1 above and nearly parallel to the 1:1 line, and trending

to aproach it with increasing speeds, this amount of overestimate would decrease at higher

speeds. Consequently, one might not want to apply a factor of 0.93 to Aquadopp currents

at the higher ranges. This reasoning led to our summary speed-correction ratio (and its

uncertainty) for the Aquadopp of 0.93 (−0.02/+0.02). Supporting these findings, Houk and

Johns (unpublished manuscript) found the Aquadopp tended to read anywhere from 0.5 to

2.5 cm s−1 higher than the DVS and SEAGUARD and that the speed difference tended to

increase proportionally to the absolute current speed.

Current direction measurements improved in agreement between instruments with in-

creasing current speed. At speeds below 5 cm s−1, there was a great deal of scatter in angle

whether comparing same-model or different-model current meters. Current angle measure-

ments have ∼15 degrees standard deviation, decreasing to ∼5 degrees standard deviation

at 10 cm s−1 speeds, and smaller yet (∼2 degrees) for speeds above 20 cm s−1. Vector-

averaged current direction over the common time period showed good agreement with the

median direction within ±3 degrees, consistent with manufacturer-specifications, with two

exceptions: The compass of VMCM 002 appears faulty with 8 degree offset to the right,

and the Aquadopp had 6 degree offset to the left of the median of the others. Houk and

Johns (unpublished manuscript) also found the Aquadopp had a slight offset of about -2 to

-4 degrees relative to the DVS and SEAGUARD.

The shape and magnitude of these direction-differences versus speed dot-plots can be

explained as resulting from a standard deviation in each of the two orthogonal measurements

of current vector components of δu1 ∼ 1 cm s−1. By simple propagation-of-error we estimate

δθ ∼
√

2
δu1

U
· 180

π

expressed in degrees for a single current meter. For two current meters measuring components

independently, the difference δudiff ∼
√

2 δu1 so

δθdiff ∼ 2
δu1

U
· 180

π

Because this estimate works well, we do not have to speculate that the ocean currents or the

mooring are introducing any added angle variation at low current speeds.
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Same-model consistency

vector-averaging intervals

days 327–525 days 361–382 days 565–572 (slope)−1 of Adm−1 speed
common 1st high highest speed speed days same-model

Model interval speed event event scatter plot 327–525 consistency

Source Table 12 Table 13 Table 14 Figure 12 Table 19

VMCM 9.01/8.82 15.20/14.66 36.64/37.35 1/1.01 1/0.96
SN069/002 = 1.02 = 1.04 = 0.98 =.99 =1.04 1%

same as
median

RCM11 8.61/8.62 14.39/14.39 34.96/35.77 1/0.98 1/1
SN153/143 = 1.00 = 1.00 = 0.98 =1.02 =1.00 1%

SEAGUARD 9.40/9.54 14.91/15.79 35.73/36.17 1/0.98 1/1.02
SN137/136 = 0.99 = 0.94 = 0.99 =1.02 =0.98 1%

Different-model comparisons
VMCM is found same as median, so compare other models to median (VMCM069)

vector-averaging intervals

summary
days 327–525 days 361–382 days 565–572 (slope)−1 of Adm−1 speed-

common 1st high highest speed speed days correction
Model interval speed event event scatter plot 327–525 ratio

Source Table 12 Table 13 Table 14 Figure 21 Table 20

ratio (median/model-type) vs. VMCM069

RCM11 9.01/8.62 14.91/14.39 35.97/35.37 1 / 0.94 1/0.93 1.04
=1.05 =1.04 =1.02 = 1.06 =1.07 -0.02/+0.03

SEAGUARD 9.01/9.47 14.91/15.35 35.97/35.95 1 / 0.95 1/1.04 0.97
=0.95 =0.97 =1.00 = 1.05 =0.96 -0.02/+0.03

Aquadopp 9.01/9.73 14.91/16.11 1 / 1.02 1/1.07 0.93
=0.93 =0.93 NA = 0.98 =0.93 -0.02/+0.02

Table 22: Current magnitude measurements summary. For different-model comparisons, the
sense of each entry is the multiplication factor which would make that current meter agree
best with the median (VMCM). Hence the inverse slope and inverse admittance are listed.
The rows labeled RCM11 and SEAGUARD summarize the instrument-pair analyses except
for columns 5 and 6 where the slope and response function analysis are presented for only
RCM 153 in row labeled RCM11 and SEAGUARD 136 in row labeled SEAGUARD.
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A Checking for non-dependence of height off bottom

We seek in this appendix to characterize whether speed and angle differences depend

solely upon different instrument models, or whether they might depend partly upon height

off the bottom in a benthic boundary layer/ bottom Ekman layer. We examine the means

and standard deviations of the currents and examine nearby CTD profiles for evidence of

bottom mixed-layer thickness.

Over a smooth bottom like at this mooring site, the theoretical boundary-layer thickness

would be proportional to the current speed U ‘at infinity’, with Hml ∼ κu∗/f and u∗ ∼ U/30,

which works out to 67 m for U = 0.6 m s−1 and von Karman’s coefficient κ = 0.4 and

f = 1.2e−4 sec−1 at 57◦S. This is a steady-state theory, whereas the currents had semidiurnal

fluctuations of at least half the amplitude during the observed high-current events. So the

theory is only a rough guideline. Over a rough bottom the thickness can be greater. The

concern here is to provide evidence that mooring heights 100 m off bottom are comfortably

above the Ekman and mixed-layer height. In highest currents and tilts, the mooring pulled

down nearly 40 m, so the lowest current meter would be 60–70 m off bottom. Thus, partly

because of the lost buoyancy from two broken glass floats, the lowest current meters would

not assuredly remain always above the boundary layer, and this section investigates this

question.

Figure 39 shows the mean speeds and angles plotted versus height off the bottom. The

means for the common time period, and for the highest-speed event are shown, because the

mooring pulls down 20 m to a maximum of 40 m in high currents. Moreover, the theoretical

thickness of a benthic boundary layer increases with current speed. So high-speed events

would be more likely to exhibit height dependence if it can be seen at all.

In a bottom Ekman layer in the southern hemisphere the angles relative to the velocity

outside the Ekman layer would veer to the right and the speeds would be expected to

decay approaching the bottom. This is not what was observed in any of the panels and

time intervals, but instead the mean speed and angle differences between depths are mainly

associated with model type rather than upon height off the bottom (Figure 39). In the

highest speed event there is instead a hint of bottom-intensification. This may resemble

the bottom-intensification observed in eddies under the Kuroshio Extension by Bishop et al.

[2011], however in this case the limited vertical separation (∼ 30 m) of these measurements

would poorly estimate vertical trapping scales of 3 to 11 km.

On each of the deployment and recovery cruises CTDs were taken within about 10-km of

the mooring. The current speeds were respectively about 20 cm s−1 and 10 cm s−1 near the

beginning and end of the records. The predicted bottom-layer thicknesses (vertical scales)
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would be respectively 27 m and 13 m. CTD temperature data from 2009 and 2010 are

shown in Figure 40; the profiles are replotted on the right versus height off the bottom.

One of the casts may have a bottom mixed-layer thickness of about 100 m (CTD F01 in

2010). All together the CTD observations do not indicate that the moored instruments were

measurably affected by bottom boundary layer effects.
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Figure 39: Mean vector-averaged speeds and direction difference from the median are shown
for two time periods (top): the common period (days 327–525) and (bottom): highest speed
event (days 565–572). 30-minute intervals in which any VMCM rotor stalled were not used
in the calculations. Data from the same current meter model are connected by the dashed
lines. In the common time period, speed differences associate with model and not with height
above the bottom. In the highest speed event the three models show higher speeds at the
lower current meter, which suggests about 1.3% bottom intensification in the approximately
30 m span of depths. The current directions do not turn significantly with height off the
bottom.
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Figure 40: Left panels: CTD temperature as a function of pressure and right panels are
CTD temperature replotted versus distance from bottom for 2009 and 2010. See Figure 2
for locations of the CTD casts.
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