**Dataset Expocode** 316420170930

Primary Contact Name: Sylvia Musielewicz

Organization: NOAA/PMEL

Address: 7600 Sand Point Way NE Seattle, WA 98115-6349

Phone:

Email: Sylvia.Musielewicz@noaa.gov

**Investigator** Name: Dr. Adrienne Sutton

Organization: NOAA/PMEL

Address: 7600 Sand Point Way NE Seattle, WA 98115-6349

Phone: (206) 526-6879

Email: Adrienne.Sutton@noaa.gov

**Dataset** Funding Info: NOAA

Initial Submission (yyyymmdd): 01/11/2020

Revised Submission (yyyymmdd):

Campaign/Cruise Expocode: 316420170930

Campaign/Cruise Name: Campaign/Cruise Info:

**Platform Type:** 

CO2 Instrument Type: Survey Type: Moored Buoy

Vessel Name: Vessel Owner: Vessel Code: WA 1

Coverage Start Date (yyyymmdd): 20170930

End Date (yyyymmdd): 20171119 Westernmost Longitude: 124.747 W Easternmost Longitude: 124.747 W Northernmost Latitude: 47.355 N Southernmost Latitude: 47.355 N

Variable Name: Date Time

Unit:

**Description:** Date and Time (UTC)

Variable Name: xCO2 SW (wet)

Unit:

Description: (umol/mol) Mole fraction of CO2 in air in equilibrium with the seawater

at sea surface temperature and measured humidity.

Variable Name: CO2 SW QF

Unit:

**Description:** Flag for xCO2 sw (wet)

Variable Name: H2O SW

Unit:

**Description:** (mmol/mol) Mole fraction of H2O in air from equilibrator.

Variable Name: xCO2 Air (wet)

Unit:

**Description:** umol/mol) Mole fraction of CO2 in air from airblock, 4 feet above the

sea surface at measured humidity.

Variable Name: CO2 Air QF

Unit:

**Description:** Quality Flag for xCO2 Air (wet)

Variable Name: H2O Air

**Unit:** 

**Description:** (mmol/mol) Mole fraction of H2O in air from airblock, 4 feet above the

sea surface.

Variable Name: Licor Atm Pressure

Unit:

Description: (hPa) Atmospheric pressure at the airblock, 4 feet above the sea

surface.

Variable Name: Licor Temp

Unit:

**Description:** (C) Temperature of the Infrared Licor 820 in degrees Celsius.

Variable Name: MAPCO2 %O2

**Unit:** 

**Description:** The percent oxygen of the surface seawater divided by the percent oxygen of the atmosphere at 4 feet above the sea surface. Disclaimer: The oxygen measurement is made in the equilibrated air. We have found that the oxygen does not come to complete equilibrium so any rapid changes in oxygen do not get properly captured using this system. Therefore, we tend to use the oxygen data

only as a qualitative sense of the biology. It is not a quantitative measure.

Variable Name: SST

Unit:

**Description:** (C) Sea Surface Temperature.

Variable Name: Salinity

**Unit:** 

Description: (PSU) Sea Surface Salinity.

Variable Name: xCO2 SW (dry)

Unit:

Description: (umol/mol) Mole fraction of CO2 in air in equilibrium with the seawater

at sea surface temperature (dry air).

**Variable** Name: xCO2 Air (dry)

Unit:

**Description:** (umol/mol) Mole fraction of CO2 in air at the airblock, 4 feet above the

sea surface (dry air).

Variable Name: fCO2 SW (sat)

**Unit:** 

**Description:** (uatm) Fugacity of CO2 in air in equilibrium with the seawater at sea surface temperature (100% humidity). Since the measurements are taken at the

sea surface, warming calculations are not necessary.

Variable Name: fCO2 Air (sat)

Unit:

**Description:** (uatm) Fugacity of CO2 in air at the airblock, 4 feet above the sea

surface (100% humidity).

Variable Name: dfCO2

Unit:

**Description:** Difference of the fugacity of the CO2 in seawater and the fugacity of

the CO2 in air (fCO2 SW - fCO2 Air).

Variable Name: pCO2 SW (wet)

Unit:

**Description:** (uatm) Partial Pressure of CO2 in air in equilibrium with the seawater

at sea surface temperature (100% humidity)

Variable Name: pCO2 Air (wet)

Unit:

Description: (uatm) Partial Pressure of CO2 in air at the airblock, 4 feet above the

sea surface (100% humidity).

Variable Name: dpCO2

Unit:

**Description:** Difference of the partial pressure of CO2 in seawater and air (pCO2

SW - pCO2 Air

Variable Name: pH SW

**Unit:** 

**Description:** pH of Seawater (total scale)

Variable Name: pH QF

Unit:

Description: Quality Flag for pH

Sea Surface Location: 1m

Temperature Manufacturer: SeaBird

Model: SBE 37

Accuracy: < 0.01 (°C if units not given)
Precision: (°C if units not given)
Calibration: ~ Annually by SeaBird

**Comments:** Temperature data are internally recorded and collected during the equilibration period. Data are not post-calibrated. Annual drift for this deployment was minimal and does not impact the fCO2 and pCO2 calculations (within the degree of accuracy of the CO2 measurement). Contact us if you would like the

CTD post-calibration information.

Sea Surface Salinity Location: 1m

Manufacturer: SeaBird

Model: SBE 37 Accuracy: < 0.05

Precision:

Calibration: ~ Annually by SeaBird

**Comments:** Conductivity data are internally recorded and collected during the equilibration period. Data are not post-calibrated. Annual drift for this deployment was minimal and does not impact the fCO2 and pCO2 calculations (within the degree of accuracy of the CO2 measurement). Contact us if you would like the

CTD post-calibration information.

Atmospheric Location:

Pressure Normalized to Sea Level:

Manufacturer:

Model:

**Accuracy:** (hPa if units not given) **Precision:** (hPa if units not given)

Calibration:

Comments:

**Atmospheric CO2** Measured/Frequency: yes, 3hr cycle

> Intake Location: unused **Drying Method:** unused

Atmospheric CO2 Accuracy: 1 uatm **Atmospheric CO2 Precision:** 0.6 uatm

**Aqueous CO2 Equilibrator Design**  **System Manufacturer:** Intake Depth: 14cm - 20cm

**Intake Location:** 

**Equilibration Type:** Bubble Equilibrator

Equilibrator Volume (L): N/A

Headspace Gas Flow Rate (ml/min): ~600 cc/min

Equilibrator Water Flow Rate (L/min): N/A

**Equilibrator Vented:** Yes **Equilibration Comments:** 

**Drying Method:** 

**Aqueous CO2 Sensor Details**  **Measurement Method:** Absolute, non-dispersive infrared (NDIR) gas analyzer

Method details: Manufacturer: Licor

Model: LI-820

**Measured CO2 Values:** 

Measurement Frequency: 3hr cycle Aqueous CO2 Accuracy: 2 uatm Aqueous CO2 Precision: 0.7 uatm

**Sensor Calibrations:** 

Calibration of Calibration Gases: At the beginning of each sample, the instrument self-calibrates using a zero and high standard. The zero standard is generated by cycling a small amount of air through a soda lime chamber. The high standard is from a cylinder of calibrated standard reference gas, 457.43 umol/ mol, from ESRL. ESRL standards are traceable to WMO x93 scale with a stated reproducibility of 0.06 micromole/mole. For more information on estimates of accuracy and precision of the MAPCO2 system, see Sutton et al. 2014 (reference below).

**Number Non-Zero Gas Standards:** 

Calibration Gases:

NOAA Earth System Research #xD; Laboratory (ESRL)

**Comparison to Other CO2 Analyses:** 

Comments:

**Method Reference:** 

Sutton, A.J., Sabine, C.L., Maenner-Jones, S., Lawrence-Slavas, N., Meinig, C., Feely, R.A., Mathis, J.T., Musielewicz, S., Bott, R., McLain, P.D., Fought, J., Kozyr, A., 2014b. A high-frequency atmospheric and seawater pCO2 data set from 14 open ocean sites using a moored autonomous system. Earth Sys. Sci. Data, 6, doi: 10.5194/essd-6-353-2014, 353-366.

**Equilibrator Temperature Sensor Manufacturer:** 

Location:

**Accuracy:** (°C if units not given) **Precision:** (°C if units not given)

Calibration:

**Comments:** 

Equilibrator Pressure Sensor Location: Manufacturer:

Model:

**Accuracy:** (hPa if units not given) **Precision:** (hPa if units not given)

Calibration: Comments:

Other Sensor

Description:

Manufacturer: Maxtec Oxygen Sensor

Model: Max-250

**Accuracy:** 2.0% Full Scale over operating temperature range. 1.0% Full Scale @

constant temperature and pressure

Precision:

**Calibration:** Factory calibrated before purchase. Recalibrated to sea level

atmospheric air every 7 days

Comments:

**Other Sensor** 

**Description:** 

Manufacturer: Sensirion Humidity Sensor

Model: SHT71 Accuracy: > 0.01%

**Precision:** 

Calibration: Factory calibrated before purchase.

**Comments:** 

Additional Information

Suggested QC flag from Data Provider:

**Additional Comments:** o All measurements are at sea surface temperature and atmospheric pressure. o During the equilibration cycle, a closed loop of air equilibrates with seawater for 10 minutes. Once the equilibration period is complete, the pump stops and the system opens to the atmosphere allowing the pressure to equilibrate with atmospheric pressure. Measurements are recorded for 30 seconds at 2 hertz and then averaged. o During the air cycle, fresh air is pumped through the detector for 1 minute. Once the pump stops, the system opens to the atmosphere allowing the pressure to equilibrate with atmospheric pressure. Measurements are recorded for 30 seconds at 2 hertz and then averaged, o The gas streams for both the air cycle and equilibrator cycle are partially dried before entering the detector. The values listed as wet xCO2 generally have relative humidity levels ranging from 40 to 80 percent. The humidity levels increase over the course of a deployment. o Sampling occurs every 3 hours. The infrared detector is calibrated at the beginning of every sampling period. Averaged data and standard deviations for each measurement are transmitted back daily. o To calculate the dry measurements, the water mole fraction in the Licor detector must be known. A relative humidity sensor is located immediately downstream of the detector. o As part of the QC process, each data set is compared with the Marine Boundary Layer (MBL) data from GlobalView-CO2. As part of the QC process, xCO2 air measurements are compared to the following data sets when available: previous MAPCO2 deployment if overlap on recovery/deployment, following MAPCO2 deployment if overlap on recovery/deployment, and Marine Boundary Layer (MBL) xCO2 air data from GlobalView-CO2. The available comparison data sets are in good agreement with the MAPCO2 air data and no adjustment was made. GLOBALVIEW-CO 2: Cooperative Atmospheric Data

Integration Project - Carbon Dioxide. CD-ROM, NOAA ESRL, Boulder, Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/ co2/GLOBALVIEW], 2010 o During the QC process, an adjustment to the Licor pressure is also made based on each sensor's bias to barometric pressure as measured in the lab. This system has Licor pressure bias of +0.300 applied. Averaged wet xCO2 measurements are post-calibrated using a simple linear regression between original averaged measurements and span coefficients, a method similar to the post-cal established by the underway pCO2 community as described here: Feely, R.A., R. Wanninkhof, H.B. Milburn, C.E. Cosca, M. Stapp, and P.P. Murphy, A new automated underway system for making high precision pCO2 measurements onboard research ships, Analytica Chim. Acta, 377, 185-191, 1998. Post calculation correlation between Licor temperature and coefficient is: Licor coef =  $-0.001887 * Temp + 0.8379 r^2 = 0.94 o No data = -999 o These data$ are made freely available to the public and the scientific community in the belief that their wide dissemination will lead to greater understanding and new scientific insights. The availability of these data does not constitute publication of the data. We rely on the ethics and integrity of the user to assure that PMEL receives fair credit for our work. Please send manuscripts using this data to PMEL for review before they are submitted for publication so we can insure that the quality and limitations of the data are accurately represented.

## **Citation for this Dataset:**

Sutton, A., C. Sabine, S. Maenner, S. Musielewicz, R. Bott, and J. Osborne. 2017. High-resolution ocean and atmosphere pCO2 time-series measurements from mooring WA\_125W\_47N.

## Other References for this Dataset:

None