

2RORS REPORTED TO PRINCIPAL INVESTIGATOR:

* DNODC $\times 8700092-02$

DATE OF ENTRY：11／13／37
REFERENCE PUMEER： 319713 ACCESSION NUMEER： $870003 E$ FGRMER REFERENCE NUMEER： FORMER ACCESSION SUMEER：

```
(RESUE OR&LY)
```

IPWENTORY
MEDIA-1N: Gs - Digites Magretic Tape Drade code os
EXCHARGE (FORMAT): EOOS - LCW REScluticm STD
PROCESSING \{FORMAT\}: COEE - LEW RESGiuticin STD SSDE Fcimmats
* NOTE 3 If data is FOEE, Create ars additicrias record for CoEE.
IPNSTITUTE \{COUNTRY AND 3NSTITUTE CODES\}: $3\{E 7$
PLATFORM \{COUNTRY AWD MLATFORM CODESS: JINW
PLATFORM TVPE: 3 - SHiP DINDE CODE GF
GRIGINATORS FILE ID: ORIGIVATORS CRUISE TD: TTSIGE
CRUISE START DATE: GG, EE,GA CRUISE END DATE: OFIIEABA PTESS PGDH
PROJECT CODE: DATA USE CODE \{DUE〉: 3 ta cciritirue
FEEPTER FSVIEW FAEXIT FSFORM CLF FEFLD CLR FTDELETE FGMODIFY FGRERORT FIGMLUTS
INVENTORY
VOLUME - NUMEER OF STATIONS: JTI NUMEER OF RECORDS: 7E,467
If STA/REC ccurts are roct apprcipriate ther erter -
NUMEER: U⿰丬ITS:
AVERAGE REC SIZE: 112 MEYTES: B. 116304
OCEAN AREA
CODE 1: MEANSING:
CODE E: MEANTivG:
CODE 3: MEANIVG:
DTNDE TRACK TRANSACTION GENERATED: $/$

[^0]
\# $572 c / 13.69-87$

DEPARTMENT OF THE NAVY

NAVAL POSTGRADUATE SCHOOL
MONTEREY. CA 939435100
IN REPLY REFER TO:
NC4 (68Pa)/jb 3 Mar 87

Chief, Data Acquisition and Management Branch
National Oceanographic Data Center
MIA
Washington, DC 20235
near Sirs:
We are sending to you under separate cover four magnetic tape reels containing oceanographic data from Arctic regions. fllacsol contains data from the ice-Covered Bering Sea in March 1980. NחC.811, MOC. 841 and NDC,B51 contain data from the region of East Greenland between 74 degrees M and 81 degrees N in 1931, 1984 and 1985 respectively. Enclosed are descriptions of the data and formats (Enclosures 1 and 2) and samples of the data (Enclosures 3, 4 and 5). We should appreciate acknowledgement of receipt of the tapes when they arrive.

Please direct general correspondence regarding the tapes to Professor R.H. Rourke, Code GRAf at the above address or by telephone to 4n8-646-3270/2552. For technical problems, my phone number is 546-3255/2552. on Monday-Wednesday mornings.

Sincerely,

ROBERT G. PAOIJETTE.
Emeritus Professor Department of Oceanography

Enclosures
(1) 2 data descriptions
(2) 3 data samples

Copy to:
Prof. R.H. Rourke, w/encis.
Each tape package, with appropriate enclosures

Aeci.No. 8100092

TDISKETIE IWFOKJXATIUN

JSE OIVLY.

ISE OiNL Y

DESCRIPTION OE NAVAL POSTGRADUATE SCHOOL MIZPAC
 OCEAN DATA TAPES OE 1980

MEASUREMENTS

The cruise area was essentially a circumnavigation of st. Lawrence I. in March, extending from deep water north of Unimak Pass, through the ice and returning to deep, ice-free water again several hundred kilometers to the west.

The data were taken with two instruments. The Neil Brown Instrument Systems (NBIS) CTD was used exclusively from the icebreaker POLAR SEA. Its data are in the first file in records 60 bytes long, blocked to a length of 2880 bytes. About one-fourth of the stations were taken from a hovering helicopter with the Applied Physics Laboratory, University of Wasnington (APL) CTD.* In a few cases the latter instrument was used simultaneously with the NBIS instrument from the ship for intercomparison. These data are in the second file.

The NBIS CTD was continually standardized by means of Nansen bottles tripped 6 m above the CTD at the bottom of its travel. Salinities from the bottles were run on a deck salinometer of the current-transformer type. Twenty-one comparisons showed the NBIS CTD to have an average temperature error of -0.0088 degree. C with a standard deviation of 0.014 degree. C. The salinity error was $0.00290 / 00$ with a standard deviation of $0.0180 / 00$. In view of the relatively large standard deviations and the fact that the instrument recently had been calibrated by the manufacturer, these corrections were not applied.

The APL CTD could not be standardized in the same way. It was calibrated before the cruise at the Northwest Regional Calibration Center and it was compared with the NBIS CTD 9 times by simultaneous lowerings made from different points on the ship. Only the near-bottom data were used for intercomparison as the near-surface data likely were contaminated by heat and effluent from the ship. These comparisons showed the APL CTD to read lower than the NBIS CTD by $0.008 d e g r e e . C$ in temperature and higher by $0.0120 / 00$ in salinity. Salinity and temperature are reciprocally related

* Becker,P.,Light Aircraft Deployable CTD System, Proc. Third S/T/D Conference and Workshop, Plessey Environmental Systems, San Diego, 1975.
and the above result suggests that about $2 / 3$ of the salinity error was due to the temperature error and only $1 / 3$ to conductivity. The standard deviation of the differences was 0.011 degree in temperature and $0.0210 / 00$ in salinity. Eor this reason again the corrections were not applied. In both CTD's, pressure corrections based on the zero-pressure observation were applied.

E
Most of the stations on the tape represent upward traverses of the CTD because the downward traverses sere found to have small temperature anomalies seemingly associated with stored warmth in the instrument body and occasionally to ice forming in the conductivity cell. Where two stations from the same instrument at the same time are presented, the first is a downward traverse and the second an upward traverse. Station 34 , which was recovered from the source tape after all the others, is from the upward traverse and has not been reinverted.

The data were screened by computer for gross errors of any length and for moderate single-point spikes. Multiplepoint ancmalies, if not too large, were regarded as having a substantial likelihood of being real. Non-essential data, recorded when the CTD was stopped at the top or bottom of its travel were removed. Reversals in CTD direction of motion were removed by interpolating nearly constant values of pressure, temperature and conductivity between the last forward-going point and the next forward-going point. Because of the small temperature gradients, sensor response corrections were not required. No smoothing was applied.

After this editing, stations in which the water column was traversed from the bottom up were inverted. Salinity then was calculated, using the equations then in use at the Northwest Regional Calibration Center. Sound velocity was computed from Wilson's equation, and sigma-t from Knudsen's equations. Oxygen concentration and the oxygen membrane temperature are listed in the NBIS data but they are completely unreliable. Each record has a serial number, generated when the data were edited.

The data formats are attached.

DATA EORMATS

General
The data for other agencies are written in EBCDIC on 9 -track unlabeled tapes at 1600 bpi in two files. The first
file, with NBIS data, has a 60-byte record length; the second, with the APL data, has a 48-byte record length. Both are blocked to 2880 bytes per block. Each station data set is headed by two header records, carrying station number, data record count and other ancillary observations made at the station. The coding is as follows. References to tables refer to NODC Publication M-2, August 1964.

Header Coding, First Record.

```
Columns Explanation
1 - 2 Nation code per NODC Institute and Ship Codes, 1979.
3 - 4 Ship code from the same reference.
5 - 6 Latitude in degrees, always north.
7-8 Latitude, minutes.
    9 Latitude, tenths of minutes.
10-12 Longitude, degrees, always west.
13 - 14 Longitude, minutes.
    L5 Longitude, tenths of minutes.
16 - 18 Marsden square.
19 - 20 Last two digits of year.
21 - 22 Month, numerical.
23-24 Day of the month, numerical.
25-26 Hour, Gint.
    27 Tenths of the hour.
28-31 Cruise number, alphanumeric, lacking in 1980.
31-33 Station number, numeric.
34-37 Depth of water, meters.
38 - 39 Sampling depth in hundreds of meters.
    40 An asterisk.
```

Second Header Record.

Columns	Explanation
1-4	Number of data records, not counting header.
5	Navigation code: 1=NAVSAT, Radar or piloting; 2=LORAN or OMEGA; 3=Dead reckoning (probably from a fairly close, better position).
6-7	Ice concentration in tenths. Negative number is exponent of 10 for very low concentrations.
8-9	Direction from which predominant wave/swell comes, in tens of degrees, true.
10	Wave height, Table 10.
11	Wave period, always blank in this cruise.
12-13	Direction from which wind comes, in tens of degrees, true.
15-17	Wind speed, Beaufort, from Table 17. Barometric pressure in millibars, lacking. the first digit, if 1000 mb or greater.
18-20	Dry-bulb air temperature, with sign, in degrees C.
21	Dry-bulb temperature, tenths of degrees.
22-24	Wet-bulb air temperature, with sign, in degrees C.
25	Wet-bulb temperature, tenths of degrees.
26	Blank.
27	Present weather, from Table 21.
28	Cloud type, from Table 25.
29	Cloud amount, from Table 26.
30	Visibility, from Table 27.
31-32	A tag on the station number used for multiple lowerings at or near the same location (numerical) or designating a helicopter station (H) or a simultaneous observation by the APL CTD (W). The latter two usages are not always applied.
33-36	A check value of the station number.
37-42	Record serial numbe

Data Coding

Explanation

$1-6$	Pressure in decibars and two decimals, form xxx. xx
$7-12$	Temperature, degrees C, form xx. xxx
$13-18$	Salinity, o/oo, form xx. xxx
$19-25$	Sound velocity, m/s, form xxxx. xx
$26-32$	Sigma-t, kg/m, form xx. xxx
$33-40$	Serial number of record, form xxxxxxxx
$42-48$	Electrical conductivity ratio of UNESCO 1966, form 0.
$49-60$	Not present in APL data; useless in NBIS data.

DESCRIPTION OE NAVAL POSTGRADUATE SCHOOL MIZPAC/MIZLANT OCEAN DATA TAPES OE 1981-1985

MEASUREMENTS

These data generally are from the region of the East Greenland Polar Front and over the continental shelf of East Greenland between about 7 degree. N and 82 degree. N. The 1981 data were in the October-November time frame; the others are in the August-September time frame.

The data were taken with a Neil Brown Instrument Systems Mark III CTD. The instrument was standardized with a combination of:
a) Nansen bottles tripped just above the CTD at the bottom of its travel.
b) Laboratory calibrations before and after the cruise.
c) Comparisons of salinities at depths greater than 1000 m at two points close in space but 20-30 days distant in time.

None of these standardization systems was precise enough to challenge the apparent inherent accuracy of the CTD and no corrections were applied to conductivity or temperature. However, pressure received an additive correction based on the zero-pressure observation.

The data were screened by computer for gross errors of any length and for moderate single-point spikes. Multiplepoint anomalies, if not too large, were regarded as having a substantial likelihood of being real. Nonessential data recorded when the CTD was stopped at the top or bottom of its travel were removed. Reversals in CTD direction of motion were removed by interpolating nearly constant values of pressure, temperature and conductivity between the last forward-going point and the next deeper-forward-going point. Despiking is not satisfactory in such places; fortunately, there are few in these data.

The electrical conductivity was then de-spiked by correcting both the apparent temperature and apparent conducetivity for sensor lag, using a first-order response equation. After this the conductivity and computed salinity were smoothed by a 5 -point centered running mean. The temperature was not so smoothed.

After despiking, stations in which the water column was traversed from the bottom up were inverted. There are very few, if any, such stations in the data prepared for
distribution.
Sound velocity, sigma-t, delta and dynamic depth were then derived. In 1985 theta and sigma-theta were added. For these calculations the equations of Fofonoff and Millard (Algorithms for Oceanographic Computation, WHOI Preprint, 1983) were used. Each record has a serial number, generated when the data were edited and despiked. Data prepared for other agencies will not have these numbers in sequence because the data have been rearranged and the upward traverses removed without altering the original serial numbers.

The data formats are attached.

DATA EORMATS

General
The data for other agencies are written in 74 -byte records in ESCDIC, on 9 -track unlabeled tapes at 1600 bpi in one file. They are blocked 2960 bytes to a blocj, or 40 records. Each station data set is headed by a header carrying station number, data record count and other ancillary observations made at the station. The coding is as follows. References to tables refer to NODC Publication M-2, August 1964.

Header Coding.
Columns Explanation
1-2 Nation code per NODC Institute and Ship Codes, 1979.
3-4 Ship code from the same reference.
5 Hemisphere, always "N" here.
6-7 Latitude in degrees.
8-9 Latitude, minutes.
10 Latitude, tenths of minutes.
11 Hemisphere, "E" or"W".
12 - 14 Longitude, degrees.
15-16 Longitude, minutes.
17 Longitude, tenths of minutes.
18-20 Marsden square.
21-22 Last two digits of year.
23 - 24 Month, numerical.
25-26 Day of the month, numerical.
27-28 Hour, GMT.
29 Tenths of the hour.
30-34 Cruise number, alphanumeric..

35-37 Station number, numeric.
38 - 39 Tag for station number, used for multiple samplings near the same location.
40 Direction of instrument motion, D: down, U : up.

```
41-44 Depth of water, meters.
45 - 46 Sampling depth in hundreds of meters, usually blank.
47 - 50 Number of data records, not counting header.
    51 Navigation code: l=NAVSAT, Radar or piloting; 2=LORAN
        or OMEGA; 3=Dead reckoning (probably from a fairly
        close, better position).
52-53 Ice concentration in tenths. Negative number is
            exponent of }10\mathrm{ for very low concentrations.
54-55 Direction from which predominant wave/swell comes,
        in tens of degrees, true.
    56 Wave height, Table 10.
57-58 Direction from which wind comes, in tens of degrees, true.
        59 Wind speed, Beaufort, from Table 17.
60 - 62 Barometric pressure in millibars, lacking.
            the first digit, if 1000 mb or greater.
63-65 Dry-bulb air temperature, with sign, in degrees C.
        66 Dry-bulb temperature, tenths of degrees.
67-69 Wet-bulb air temperature, with sign, in degrees C.
        70 Wet-iulb temperature, tenths of degrees.
        71 Present weather, from Table 21.
        72 Cloud type, from Table 25.
        73 Cloud amcunt, from Table 26.
        74 Visibility, from Table 27.
```

Data Coding

Columns
Explanation
1-6 Pressure in decibars and tenths, form xxxx. x
7-12 Temperature, degrees C, form xx. xxx
13-18 Salinity, o/00, form xx. xxx
19-25 Sound velocity, m / s, form xxxx. xx
26-32 Sigma-t, $\mathrm{kg} / \mathrm{m}^{3}$, form xx . xxxx

- 33 - 40 Serial number of record, form xxxxxxxx

41-48 Electrical conductivity in millimhos/cm, form xx. xxxxx
49-54 Theta in degrees Ç. , form xx. xxx *
$55-60$ Sigma-theta, $\mathrm{kg} / \mathrm{m}^{3}$, form $\mathrm{xx} . \mathrm{xxx}$ *
61-68 Anomaly of the specific volume, delta, in units of
$10^{-8} \mathrm{~kg} / \mathrm{m}^{3}$, form xxxx . xxx
69-74 Dynamic depth, dynamic meters, form xx. xxx

[^1]

28 JAN 87. DUYP 50. EECOPDS OF NDC951. Smilar to NDC811; NDCEY/

31

$50 n 4$
5

LOCATION OF FOL SOURCE

MONITOR: CONTACT

RECORD ALL ERRORS FOUND

M1ICH

$$
\begin{aligned}
& \text { SHIP =3INW DISKFILE = PAQOUT TT } 19
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\text { SHIP }=31 \text { NW } \quad 01 \text { SKFILE }=P A Q 204 \pi-178192 \\
840822 \quad 840916 \quad 331 \quad 72467
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{rl}
S H P & =31 P S, ~ O 15 K F L E \\
800229 & 800402
\end{array}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
H NOTE - PAQ 5 OLT MUST BE ADOED TD PAQ4OUT AFTER Defeting Duplicates α Sorgec MARY W以L FFuE TO Smpply coppect figues for Recordo ostations furtauat

Mary These Naval Pootgraduate Schosl lata rray eontain problems! I spoke with Professor Paguette and he said that the tata in PADSOMT. wein duplicates (in some instancer) of data in tApyour. Other data in PAP 85 unt show blbe sorted inta the PAg4 amt flle. (You'II witice that PAQ50nt is unt in thionological onder). After uphating the Ph, 4em, please niform mitchall of Newnumbers 1.e stations arecerds.
I. nad one station that was submittet bottoms-ngin and surtel this on orginetors tile and it is $O K t$ processnow. Howedar, it you showl find more, plocsse let meknow y I'/' go back to originaturls fito t da ryy thing! You have prozram to eliminate duplinate depths (pressures, res this case) that must be eoployed The PAQ40nt + PAQS ont contaned dala to hundredths ant refer monging results shm many duplicdes It don t know abot ibe othar onflat files. I also iontcestct a luse nimutier of etations conta in negatue pressmes. If you want motificalidos ta your seftwora to ha, ile this prablem, I !ll be hapy te biblige. (I domt thirk thet would be a mager moditict.an)

Bub

RRORS REPORTED TO PRINCIPAL INVESTIGATOR:
\# DNODC $\times 8700092-01$.

JOITIONAL ERRORS/CORRECTIONS (NOT REPORTED TO PI.)

OHMENTS (TRACKS DELETED, FIELDS DELETED, ETC.)

MULDARS TRACK:
\qquad

LOCATION OF FOLL SOURCE Archive r (T1PY)

RECORD ALL ERRORS FOUND

COMSEC(S).
138°

ERRORS FOUND.
Prefixed minus signs to Temp values from 4.9 m to $15: 8 \mathrm{~m}$.

Also, changed Temp. value from -02.635°. to - Or: 635°.

Quality indicators were added to two stations

M19CH

$$
\begin{aligned}
& S H I P=3 \text { NWW DISKFLLE }=P A Q O U T T T \$ 191
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\text { SHIP }=31 \text { NW } \quad 015 K F I L E=p A q 204 \pi+T 6 / 92 \\
840822 \quad 840916 \quad 72467
\end{array} \\
& \begin{array}{r}
S H P=310 W \quad \text { DLSKEILE } \\
811017 \quad 81115 / \quad \frac{156}{} \quad \frac{T T S 193}{43376}
\end{array}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
G NOTE - PAQ 5 OUT MuST BE AODED TD PAQ40UT AFYER DeLeting Duplicates a Sorted
MFRY WLLALUS TO Sw,pLy copRect "figues for Records σ stations purhouat

Mary. These Naval Postginduale Schorl late ray mountain problems! I spake with frofesgor Paquette and he said that the data in AAdsont. were duplicates (in some instances) of data in PAtton. other data in Pit 95 out show doe sorted int the PAqubut file (yo nl wat ice that PAQ5OMT is not in chronological urdar). After uphat ing the PAQ4OMT, please inform Mitchell of New numbers 1.e stations wrecerds.

I had owe station that was submitted "bottomsunp" and sorted this ondongiator's fila and it is ok to process now. However, if you should find more, please let me know y I'i/i go back to originalarls filo t do my thing! You have program tocliminefe daplinaly depths (pressures, in this case) that must be employed The PAp 4 one + PARSon contained data to hundredths ant after pomading results show many duplicates. I don th know about the other output files. I also wat iced that a large mounter of stations contain Negative pitssunces. If you want modificalicas to your seftwore bo haw die this problem, I'll be kaph to oblige. (I dort think that would be a nigh modrlict.me)

Bub


```
DINDE TRACK TRANSACTION GENERATED: ,
```


DEPARTMENT OF THE NAVY

NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 939435100
in reply refer to: NC4 (68Pa)/jb 3 Mar 87

Chief, Data Acquisition and Management Branch National Oceanographic Data Center
MOA
Washington, חC. 20235
Dear Sirs:
We are sending to you under separate cover four magnetic tape reels containing oceanographic data from Arctic regions. NDCBOl contains data from the ice-covered Bering Sea in March 1980. NDC.811, NDC.841 and NDC.B51 contain data from the region of East freenland between 74 degrees N and 21 degrees N in 1981,1984 and 1985 respectively. Enclosed are descriptions of the data and formats (Enclosures 1 and 2) and samples of the data (Enclosures 3 , 4 and 5). We should appreciate acknowledgement of receipt of the tapes when they arrive.

Please direct general correspondence regarding the tapes to Professor R.H. Rourke, Code GRAf at the above address or by telephone to 4n8-646-3270/2552. For technical problems, my phone number is 646-3255/?55? on Monday-Wednesday mornings.

Enclosures
(1) 2 data descriptions
(2) 3 data samples

Copy to:

Prof. R.H. Rourke, w/encls.
Each tape package,
with appropriate enclosures

Sumbixmex
cily to' w' toper, sear w' tajes
PER CARD DISK TAPE
OTHER(SPECIFY):
PETIE TOISKEITE MFOKXATION

 N:C:

JSE ONiLY.

Tapsican

IT NEDIUA
APPR CARD DISK TAPE
SKETTE OTHER(SPECIFY)

OUTPUF MEDIUI
CARD DISK PRINT TAPE PLOT DISKETTE OTHER(SPECIEY)

FDISKETIE INFOKSATIUN

USE OiNLY

DESCRIPTION OE NAVAL POSTGRADUATE SCHOOL MIZPAC
OCEAN DATA TAPES OE 1980

MEASUREMENTS

The cruise area was essentially a circumnavigation of St. Lawrence I. in March, extending from deep water north of Unimak Pass, through the ice and returning to deep, ice-free water again several hundred kilometers to the west.

The data were taken with two instruments. The Neil Brown Instrument= systems (NEIS) CTD was used exclusively from the icebreaker POLAR SEA. Its data are in the first file in records 50 bytes long, blocked to a length of 2880 bytes. About one-fourch of the stations mere taken from a hovering helicopter :lith the foplied Physics Laboratory, University of Hashing rent was used simultaneously with the NBIS instrument from the ship for intercomparison. These data are in the second file.

The NSIS CTD was continually standardized by means of Nansen bottles tripped $\sigma \mathrm{m}$ above the CTD. at the bottom of its travel. Saiinities from the bottles were run on a deck salinometer of the current-transformer type. Twenty-one comparisons showed the NBIS CTD to have an average temperatore error of -0.0088 degree. C with a standard deviation of 0.01 degree. C. The salinity error was $0.00290 / 00$ with a standard deviation of $0.0180 / 00$. In view of the relatively large standard deviations and the fact that the instrument recently had been calibrated by the manufacturer, these corrections were not applied.

The API CTD could not be standardized in the same way. It was calibrated before the cruise at the Northwest Regional Calibration Center and it was compared with the NBIS CID 9 times by simultaneous lowerings made from different points on the ship. Only the near-bottom data were used for intercomparison as the near-surface data likely were contaminated by heat and effluent from the ship. These comparisons showed the APL CTD to read lower than the NBIS CTD by 0.008 degree. C in temperature and higher by $0.0120 / 00$ in salinity. Salinity and temperature are reciprocally related

* Becker,P., Light Aircraft Deployable CTD System, Proc. Third S/T/D Conference and Workshop, Plessey Environmental Systems, San Diego, 1975.
and the above result suggests that about $2 / 3$ of the salinity error was due to the temperature error and only $1 / 3$ to conductivity. The standard deviation of the differences was $0.011 d e g r e e$ in temperature and $0.0210 / 00$ in salinity. Eor this reason again the corrections were not applied. In both CTD's, pressure corrections based on the zero-pressure observation were applied.

Most of the stations on the tape represent upward traverses of the CTD because the downward traverses sere found to have small temperature anomalies seemingly associated with stored warmth in the instrument body and occasionally to ice forming in the conductivity cell. Where two stations from the same instrument at the same time are presented, the first is a downward traverse and the second an upward traverse. Station 34 , which was recovered from the source tape after all the others, is from the upward traverse and has not been reinverted.

The data were screened by computer for gross erzors of any length and for moderate single-point spikes. Multiplepoint ancmalies, if not too large, were regarced as having a substantial likelihood of being real. Non-essential data, recorded when the CTD was storced at the top or bottom of its travel were removed. Reversais in CID direction of motion were removed by interpolating nearly constant vaiues of pressure, temperature and conductivity between the last forward-going point and the next forward-going point. Because of the small temperature gradients, sensor response corrections were not required. No smoothing was applied.

After this editing, stations in which the water column was traversed from the bottom up were inverted. Salinity then was calculated, using the equations then in use at the Northwest Recional Calibration Center. Sound velocity was computed from Wilson's equation, and sigma-t from Knudsen's ecuations. Oxygen concentration and the oxygen membrane temperature are listed in the NBIS data but they are completely unreliable. Each record has a serial number, generated when the data were edited.

The data formats are attached.

DATA EORMATS

General

The data for other agencies are written in EBCDIC on 9 -track unlabeled tapes at 1600 bpi in two files. The first
file, with NBIS data, has a 60-byte record length; the second, with the APL data, has a 48-byte record length. Both are blocked to 2880 bytes per block. Each station data set is headed by two header records, carrying station number, data record count and other ancillary observations made at the station. The coding is as follows. References to tables refer to NODC Publication M-2, August 1964.

Header Coding, First Record.

```
Columns Explanation
I - 2 Nation code per NODC Institute and Ship Codes, 1979.
3-4 Ship code from the same reference.
5 - 6 Latitude in cegrees, always north.
7-8 Latitude, minutes.
    9 Latitude, tenths of minutes.
10-12 Lorgitude, degrees, always west.
13 - 14 Longitucie, mirutes.
    L5 Longituce, tenths of minutes.
16 - 18 Marsden scuare.
19-20 Last tivo digits of year.
21 - 22 Month, numerical.
23-24 Day of the month, numerical.
25-26 Hour, GitT.
    27 Tenths of the hour.
28 - 31.. Cruise number, alphanumeric, lacking in 1980.
31-33 Station number, numeric.
34 - 37 Depth of water, meters.
38 - 39 Sampling depth in hundreds of meters.
    40 An asterisk.
```

```
    1 - 4 Number of data records, not counting header.
    5 Navigation code: 1=NAVSAT, Radar or piloting; 2=LORAN
        or OMEGA; 3=Dead reckoning (probably from a fairly
        close, better position).
    6-7 Ice concentration in tenths. Negative number is
    exponent of lO for very low concentrations.
8 - 9 Direction from which predominant wave/swell comes,
    in tens of degrees, true.
    10 Wave height, Table 10.
    11 Wave period, always blank in this cruise.
12 - 13 Direction from which wind comes, in tens of degrees; true.
    14 Wind sceed, Beaufort, from Table 17.
15-17 Barometric pressure in millibars, lacking.
    the first digit, if }1000\textrm{mb}\mathrm{ or greater.
18 - 20 Dry-buib air =emperature, with sign, in degrees C.
    21 Dry-bulb temperature, tenths of cegrees.
22-24 Wet-bulb air temperature, with sign, in degrees C.
    25 Wet-oulb temperature, tenths of degrees.
    25 Blank.
    27 . Present weather, from Table 21.
    28. Cloud type, from Table 25.
    29 Cloud amount, from Taile 26.
    30 Visibility, from Table 27.
31 - 32 A tag on the station number used for multiole lowerings
        at or near the same location (numerical) or designating
        a helicopter station (F) or a simultaneous observation by
        the APL CTD (W). The latter two usages are not
        always applied.
33 - 36 A check value of the station number.
37 - 42 Record serial number.
```

Data Coding

Columns

Explanation

1-6 Pressure in decibars and two decimals, form xxx. xx
7-12 Temperature, degrees C, form xx. xxx
13-18 Salinity, $0 / 00$, form xx. xxx
19-25 Sound velocity, m / s, form xxxx. xx
26-32 Sigma-t, $\mathrm{kg} / \mathrm{m}^{3}$, form $\mathrm{xx} . \mathrm{xxxx}$
33 - 40 Serial number of record, form xxxxxxxx
42-48 Electrical conductivity ratio of UNESCO 1966, form 0: xxxxxx
49-60 Not present in APL data; useless in NBIS data.

DESCRIPTION OE NAVAL POSTGRADUATE SCHOOL MIZPAC/MIZLANT OCEAN DATA TAPES OE 1981 - 1985

MEASUREMENTS

These data generally are from the region of the East Greenland Polar Front and over the continental shelf of East Greenland between about 7 degree. N and 82 degree. N. The 1981 data were in the Octcber-November time frame; the others are in the August-September time frame.

The data were taken with a Neil Brown Instrument Systems Maris III CTD. The instrument was standardized with a combination of:
a) Nansen bottles tripped just above the CTD at the, bottom of its travel.
b) Laboratory calibrations before and after the cruise.
c) Comparisons of sailnizies at depths greater than 1000 m at tiv points close in space jut. 20-30 days distant in time.

None of these standardization systems was precise enough to challenge the apparent inherent accuracy of the CTD and no corrections were applied to conductivity or temperature. However. pressure received an additive correction based on the zero-pressure observation.

The data were screened by computer for gross errors of any length and for moderate single-point spikes. Multiplepoint anomalies, if not too large, were regarded as having a substantial likelihood of being real. Nonessential data recorded when the CTD was stopped at the top or bottom of its travel. were removed. Reversals in CTD direction of motion were removed by interpolating nearly constant values of pressure, temperature and conductivity between the last forward-going point and the next deeper forvard-going point. Despiking is not satisfactory in such places; fortunately, there are few in these data.

The electrical conductivity was then de-spiked by correcting both the apparent temperature and apparent conducetivity for sensor lag, using a first-order response equation. After this the conductivity and computed salinity were smoothed by a 5 -point centered running mean. The temperature was not so smoothed.

After despiking, stations in which the water column was traversed from the bottom up were inverted. There are very few, if any, such stations in the data prepared for
distribution.
Sound velocity, sigma-t, delta and dynamic depth were then cierived. In 1985 theta and sigma-theta were added. Eor these calculations the equations of Fofonoff and Millard (Algorithms for Oceanograpinic Computation, WHOI Preprint, 1983) were used. Each record has a serial number, generated when the data were edited and despiked. Data prepared for other agencies will not have these numbers in sequence because the data have been rearranged and the uoward traverses removed without altering the original serial numbers.

The data £ormats are attached.

DETA EORMATS

General
The data for other agencies are written in 74-byte recoris in EECEIC, on G-track unlabeled tepes at iEOO bpi in one file. Tiey are blocked 2960 ふyたes to a block, or 40 recorcis. Each station data set is heacied by a header carrying station number, data record count and other ancillary coservations madie at the station. The coding is as follows. References to tables refer to NODC Publication M-2, August 196 .

Header Coding.
Columns

Explanation

35-37 Station number, numeric.
38-39 Tag for station number, used for multiple samplings near the same locarion.
40 Direction of instrument motion, $D:$ down, U : up.

```
41 - 44 Depth of water, meters.
45 - 46 Sampling depth in hundreds of meters, usually blank.
47 - 50 Numioer of data records, not counting header.
    51 Navigation code: l=NAVSAT, Radar or piloting; 2=LORAN
        or OMEGA; 3=Dead reckoning (probably from a fairly
        close, better position).
52-53 Ice concentration in tenths. Negative number is
        exponent of lo Eor very iow concentrations.
54 - 55 Direction from which predominant wave./swell comes,
                                in tens of degrees, true.
    56 Wave height, Tabi人}10
57-58 Direction from which wind comes, in tens of degrees, true.
    59
        Wind speed, Seaufort, from Table 17.
60 - 62 Barometric pressure in millibars, lacking.
                the first digit, if 1000 mb or greater.
63-65 Ery-bulb air temperature, with sign, in degrees C.
    E6 Dry-iulb temperajire, tenins of degrees.
67-69 Wiet-bulb air temperature, with sign, in degreesic.
    70 Wet-oulb temperaこure, tenths of degrees.
    71 Present weather, from Taoie 21.
    72 Cloud type, from Table 25.
    73 Cloud amcunt, Erom Table 26.
    7A Visibility, frcm Table 27.
```

Data Coding

Columns

Explanation

1-6	Pressure in decibars and tenths, form xxxx. x
7-12	Temperature, degrees C, form xx. xxx
13-18	Salinity, $0 / 00$, form xx. xxx
19-25	Sound velocity, m / s, form xxxx. x (
25-32	Sigma-t, $\mathrm{kg} / \mathrm{m}^{3}$, form $\mathrm{xx} . \mathrm{xxxx}$
33-40	Serial number of record, form xxaxxxxx
41- 58	Electrical concuctivity in millimhos/cm, form xx. xxxxx
49-54	Theta in degrees \mathcal{F}., form xx . xxx *
55-60	Sigma-theta, $\mathrm{kg} / \mathrm{m}^{3}$, form $\mathrm{xx} . \mathrm{xxx}$ *
61-68	Anomaly of the specific volume, delta, in units of $10^{-8} \mathrm{~kg} / \mathrm{m}^{3}$, form xxxx. xxx
69-74	Dynamic depth, dynamic meters, form xx. xxx

* Columns 49-60 are blank or meaningless in 1981-1984. They provided for an oxygen measurement never successfully accomplished.

28

JAN 87. DUYP 50 EECORDS OF NDC.951

Sumilar fo niDC

5004 31 N

 173
 67.951

76
16
06
06
07
07
17
07
19
09
09
70
09
09
09
0
19
09
13
09
10
10
11
11
11
11
12
12
12
12
12
12

8700092
MITCH

$$
\begin{aligned}
& S H 1 P=31 N W \cdot D I S K F 1 L E=P A Q O U T T T R 191
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { SHIP }=31 \mathrm{NW} \quad 0.5 K \text { KICE }=\text { PAq20uT +T8192 } \\
840822 \sqrt{840916 .} 272467
\end{array} \\
& \begin{array}{r}
\text { SHP }=310 W \text { DISKEILE }=P A Q 3 O U T \quad T T 8193 \\
811017 \quad 811151
\end{array} \\
& \begin{array}{c}
\text { SHIP }=31 P S, 005 K E I L E=8 A 0404 C T T 8194 \\
800229 \quad 800402 \quad 67 \% \\
12146^{*}
\end{array}
\end{aligned}
$$

GNOTE - PAG 5 OUT MUST BE ADOOD TD PAQ4OUT AFTER Deleting Duplicafles a sorted OMARY W以LAHUE TO SuppLy coppect. Piguies for Records o Stat ions fecfagunt

Mary. These Naval Pootginduait School data may eowtain problems! I spoke with professor Paquette and he said that the data in PAdSonT. were duplicates (in some instances) of data in PAptour. Other data in PAQ 9 out should be sorted into the PAg4 But file (You'II Notice that PA gS un is nut in chronological order). After updating the PAQ40-7, please inform Mitchell of New Numbers lie. stations areciards.
I had owe station that was submitter "botfomsing" and sorted this on originetar's filo nan it is o K tom process now. However, if you show find more, please let me know \forall Iii/ go back to originators fifo ot do my thing! You have program to eliminate duplicate depths (pressures, in this case) that must be employed The PAY 4 onT + PAQS ont contained data to hundred the ant after rowing results show many duplicates. Idon't know abort the other ont put files. I also watteetytat a large mintier of stations contain negative piesisucs. If you want modification to your software to ho wee this problem, Ill be haphyto oblige. (I dost think that would be a nigger moderieat, ai)

Bub

CCESSION N0. 8700092 FILETYPE CTD $\frac{\text { FO22 }}{\text { CO }}$

TRACK NO. TT 8194

- CO22 (KEF 319721)
. TAPE OR OISK DSN.
INIT.

PROJECT
IDENTIFICATION \qquad NAYY PG SEH NO.

ZRORS REPORTED TO PRINCIPAL INVESTIGATOR:

* DNODC×8700092-0Y.

JOITIONAL ERRORS/CORRECTIONS (NOT REPORTED TO P.I.)
DELETED NEGATIUE WATER GRGSSUROS
jhments (tracks deleted, fields deleted, etc.)
DATA ENTRY INFOROATIGN SYSTEM SJH \｛DATASET IFNEPTGAY＇\}
DATE DF ENTRY：11／13／37
REFERENCE NUMEER：TTB19A ACCESSION WUMEER： $87 G K O G E$
FORMER REFERENCE NUMEER：FORMER ACCESSTON PUMEER：\｛RESUE OKLY\}
INVENTGRY
MEDIA－IN：Gs－Digital Magrotic Tape DIPDE CODE OS
EXCHANGE \｛FORMAT\}: EOIB - STD/ETD \{FOEE\}PRDLESSING \｛FQRMAT\}: FGEE - CTDS公TD
＊WOTE $*$ If data is Foge，create ar additicrsal record for coge．
INSTITUTE \｛EOUNTRY AND INSTITUTE CODES）： 31E7
PLATFORM \｛COUNTRY AND PLATFORM CODES）： 310W
PLATFORM TYPE： $3-5 h i p$ UINDE CODE 6
GRIGINATORS FIEE ID： ORIGTMATORS CRUTSE ID：PROSEET CODE：DATA \｛SE CODE \｛DUC）： 3 te coritirineFEENTER FJUIEN FAEXIT FEFORM CLR FGFED CLF FTDELETE FBMODIFFY FGREPGRT FIGMULTS
INNENTORY

```
VOLUME - NUMEER DF STATIONS: ET SUMEER OF RECORDS: 1E,G17
    If STA/REC Ccurits are ricit apprcupriate thers erser -
    NUMEER: U㧨TS:
    AVERAGE REC SIIE: IEO MEYTES: I.53904O
```

OCEAP AREA

CODE $1:$	MEANING：
CODE E：	MEANING：
CODE $3:$	MEANING：

DINDE TRACK TRANSACTION GENERATED：

FEENTER FJUIEW FAEXIT FEFORM CLR FGFLD CLR FTDELETE FGMODIFY FGREAORT FIOMU能T

DEPARTMENT OF THE NAVY

NAVAL POSTGRADUATE SCHOOL

IN REPLY REFER TO:
NC4(68Pa)/jb 3 Mar 87

Chief, Data Acquisition and Management Branch
National Oceanographic Data Center
MOA
Washington, חC, 20235
Dear Sirs:
We are sending to you under separate cover four magnetic tape reels containing oceanographic data from Arctic regions. MDC801 contains data from the ice-covered Bering Sea in March 1980. NOC.811, NOC.841 and NDCB51 contain data from the region of East Greenland between 74 degrees N and 81 degrees N in 1981, 1984 and 1985 respectively. Enclosed are descriptions of the data and formats (Enclosures 1 and 2) and samples of the data (Enclosures 3, 4 and 5). We should appreciate acknowledgement of receipt of the tapes when they arrive.

Please direct general correspondence regarding the tapes to Professor R.H. Bourke, Code GRAf at the above address or by telephone to 408-646-3270/2552. For technical problems, my phone number is 646-3255/255? on Monday-Hednesday mornings.

Enclosures
(1) 2 data descriptions
(2) 3 data samples

Copy to:
Prof. R.H. Rourke, w/encls.
Each tape package,
with appropriate enclosures
Sincerely,

ROBERT G. PAOUETTF.
Emeritus Professor
Department of Oceanography

31 USE Diki

DISKEITE IWFURMATIUN.

JSE oivi Y

DESCRIPTION OE NAVAL POSTGRADUATE SCHOOL MIZPAC/MIZLANT OCEAN DATA TAPES OE 1981 - 1985

MEASUREMENTS

These data generally are from the region of the East Greenland Polar Front and over the continental shelf of East Greenland between about $7 \triangleq$ degree. N and 82 degree. N. The 1981 data were in the October-November time frame; the others are in the August-September time frame.

The data were taken with a Neil Brown Instrument Systems Mark III CTD. The instrument was standardized with a combenation of:
a) Nansen bottles tripped just above the CTD at the bottom of its travel.
j) Laboratory calibrations before and after the cruise.
c) Comparisons of salinities at depths greater than 1000 m at two points close in space but 20-30 days distant in time.

None of these standardization systems was precise enough to challenge the apparent inherent accuracy of the CTD and no corrections were applied to conductivity or temperature. However, pressure received an additive correction based on the zero-pressure observation.

The data were screened by computer for gross errors of any length and for moderate single-point spikes. Multiplepoint anomalies, if not too large, were regarded as having a substantial likelihood of being real. Nonessential data recorded when the CTD was stopped at the top or bottom of its travel were removed. Reversals in CTD direction of motion were removed by interpolating nearly constant values of pressure, temperature and conductivity between the last forward-going point and the next deeper forward-going point. Despiking is not satisfactory in such places; fortunately, there are few in these data.

The electrical conductivity was then de-spiked by correcting both the apparent temperature and apparent conductivity for sensor lag, using a first-order response equation. After this the conductivity and computed salinity were smoothed by a 5-point centered running mean. The temperature was not so smoothed.

After despiking, stations in which the water column was traversed from the bottom up were inverted. There are very few, if any, such stations in the data prepared for
distribution.
Sound velocity, sigma-t, delta and dynamic depth were then derived. In 1985 theta and sigma-theta were added. For these calculations the equations of Eofonoff and Millard (Algorithms for Oceanographic Computation, WHOI Preprint, 1983) were used. Each record has a serial number, generated when the data were edited and despiked. Data prepared for other agencies will not have these numbers in sequence because the data have been rearranged and the upward traverses removed without altering the original serial numbers.

The data formats are attached.

DATA EORMATS

General

The data for other agencies are written in 74-byte records in ESCDIC, on g-track unlabeled tapes at 1600 bpi in one file. They are blocked 2960 bytes to a block, or 40 records. Each station data set is headed by a header carrying station number, cata record count and other ancillary observations made at the station. The coding is as follows. References to tables refer to NODC Publication M-2, August 1964.

Header Coding.
Columns

Explanation

1-2 Nation code per NODC Institute and Ship Codes, 1979:
3-4 Ship code from the same reference.
5 Hemisphere, always "N" here.
6-7 Latitucie in degrees.
8-9 Latitude, minutes.
10 Latitude, tenths of minutes.
11 Hemisphere, "E" or"W".
12-14 Longitude, degrees.
15 - 16 Longitude, minutes.
17 Longitude, tenths of minutes.
18-20 Marsden square.
21-22 Last two digits of year.
23-24 Month, numerical.
25-26 Day of the month, numerical.
27-28 Hour, GMT.
29 Tenths of the hour.
30-34 Cruise number, alphanumeric.

35-37 Station number, numeric.
38-39 Tag for station number, used for multiple samplings near the same location.
40 Direction of instrument motion, D: down, U : up.

Columns

Explanation

41-44	Depth of water, meters.
45-46	Sampling depth in hundreds of meters, usually blank.
47-50	Number of data records, not counting header.
51	Navigation code: $1=$ NAVSAT, Radar or piloting; $2=$ LORAN or OMEGA; 3=Dead reckoning (probably from a fairly close, better position).
52-53	Ice concentration in tenths. Negative number is exponent of 10 for very low concentrations.
54-55	Direction from which predominant wave/swell comes, in tens of degrees, true.
56	Wave height, Table 10.
$57-58$	Direction from which wind comes, in tens of degrees, true. Wind speed, Beaufort, from Table 17.
60-62	Barometric pressure in millibars, lacking. the first digit, if 1000 mb or greater.
$63-65$	Dry-bulb air temperature, with sign, in degrees C. Dry-bulb temperature, tenths of deorees.
67-69	Wet-iulb air temperature, with sign, in degrees C.
70	Wet-oulb temperature, tenths of degrees.
71	Present weather, from Table 21.
72	Cloud type, from Taole 25.
73	Cloud amount, Erom Table 26.
74	Visibility, £rcm Table 27.

Data Ccding

Columns
Explanation

```
1 - 6 Pressure in decibars and tenths, form xxxx.x
7-12 Temperature, degrees C, form xx. xxx
13-18 Salinity, o/00, form xx. xxx
19-25 Sound velocity, m/s, form xxxx. xx
25-32 Sigma-t, kg/m
33. - 40 Serial number of record, form xxxxxxxx
41 - 48 Electrical conductivity in millimhos/cm, form xx. xxxxx
49 - 54 Theta in degrees C., form xx. xxx *
55-60 Sigma-theta, kg/m}\mp@subsup{}{}{3}\mathrm{ , form xx. xxx *
61 - 68 Anomaly of the specific volume, delta, in units of
    10-8}\textrm{kg}/\mp@subsup{\textrm{m}}{}{3}\mathrm{ , form xxxx. xxx
69 - 74 Dynamic depth, dynamic meters, form xx. xxx
```

* Columns 49-60 are blank or meaningless in 1981-1984. They provided for an oxygen measurement never successfully accomplished.

DESCRIPTION OE NAVAL POSTGRADUATE SCHOOL MIZPAC OCEAN DATA TAPES OE 1980

MEASUREMENTS

The cruise area was essentially a circumnavigation of St. Lawrence I. in March, extending from deep water north of Unimak Pass, through the ice and returning to deep, ice-free water again several hundred kilometers to the west.

The data were taken with two instruments. The Neil Brown Instrument Systems (NBIS) CTD was used exclusively from the icebreaker POLAR SEA. Its data are in the first file in records 50 bytes long, blocked to a length of 2880 bytes. About one-fourth of the stations were taken from a hovering helicopter , it the Applied Physics Laboratory, University of Washington (APL) CTD. * In a Sew cases the latter instrurent was used simultaneously with the NBIS instrument from the ship for intercomparison. These data are in the second file.

The NBIS CTD was continually standardized by means of Nansen bottles tripped $\sigma \mathrm{m}$ above the CTD at the bottom of its travel. Salinities from the bottles were run on a deck salinometer of the current-transformer type. Twenty-one comparisons showed the NBIS CTD to have an average temperature error of -0.0088 degree. C with a standard deviation of 0.01 degree. C. The salinity error was $0.00290 / 00$ with a standard deviation of $0.0180 / 00$. In view of the relatively large standard deviations and the fact that the instrument recently had been calibrated by the manufacturer, these corrections were not applied.

The APL CTD could not be standardized in the same way. It was calibrated before the cruise at the Northwest Regional Calibration Center and it was compared with the NBIS CID 9 times by simultaneous lowerings made from different points on the ship. Only the near-bottom data were used for intercomparison as the near-surface data likely were contaminated by heat and effluent from the ship. These comparisons showed the APL CTD to read lower than the NBIS CTD by 0.008 degree. C in temperature and higher by $0.0120 / 00$ in salinity. Salinity and temperature are reciprocally related

* Becker, P., Light Aircraft Deployable CTD System, Proc. Third S/T/D Conference and Workshop, Plessey Environmental Systems, San Diego, 1975.
and the above result suggests that about $2 / 3$ of the salinity error was due to the temperature error and only $1 / 3$ to conductivity. The standard deviation of the differences was O.Olldegree in temperature and $0.0210 / 00$ in salinity. For this reason again the corrections were not applied. In both CTD's, pressure corrections based on the zero-pressure observation were applied.

Most of the stations on the tape represent upward traverses of the CTD because the downward traverses sere found to have small temperature anomalies seemingly associated with stored warmth in the instrument bocy and occasionally to ice forming in the conductivity cell. Where two stations from the same instrument at the same time are presented, the first is a downward traverse and the second an upward traverse. Station 34, which was recovered from the source tape after all the others, is from the upward traverse and has not been reinverted.

The data were screened by computer for gross errors of any length and for moderate single-point spikes. Multiplepoint ancmalies, if not too large, were regarded as havirg a substantial likelihood of being real. Non-essential data, recorded when the CTD was stopped at the top or bottom of its travel were removed. Reversals in CTD direction of motion were removed by interpolating nearly constant values of pressure, temperature and conductivity between the last forward-going point and the next forward-going point. Because of the small temperature gradients, sensor response corrections were not required. No smoothing was applied.

After this editing, stations in which the water column was traversed from the bottom up were inverted. Salinity then was calculated, using the equations then in use at the Northwest Regional Calibration Center. Sound velocity was computed from Wilson's equation, and sigma-t from Knudsen's equations. Oxygen concentration and the oxygen membrane temperature are listed in the NBIS data but they are completely unreliable. Each record has a serial number, generated when the data were edited.

The data formats are attached.

DATA FORMATS

General

The data for other agencies are written in EBCDIC on 9 -track unlabeled tapes at 1600 bpi in two files. The first
file, with NBIS data, has a 60-byte record length; the second, with the APL data, has a 48 -byte record length. Both are blocked to 2880 bytes per block. Each station data set is headed by two header records, carrying station number, data record count and other ancillary observations made at the station. The coding is as follows. References to tables refer to NODC Publication M-2, August 1964.

Header Coding, First Record.
Columns
Explanation
1-2 Nation code per NODC Institute and Ship Codes, 1979.
3-4 Ship code from the same reference.
5-6 Latitude in degrees, always north.
7-8 Latitude, minutes.
9 Latitude, tenths of minutes.
10-12 Longitude, degrees, always west.
13-14 Longitucie, minutes.
15 Longitucie, tenths of minutes.
16-18 Marsden square.
19-20 Last tino digits of year.
21-22 Month, numerical.
23 - 24 Day of the month, numerical.
25-26 Hour, Gint.
27 Tenths of the hour.
28-31 Cruise number, alphanumeric, lacking in 1980.
31 - 33 Station number, numeric.
34-37 Depth of water, meters.
38 - 39 Sampiing depth in hundreds of meters.
40 An asterisk.

Second Header Record.

```
Columns
Explanation
1 - 4 Number of data records, not counting header.
    5 Navigation code: l=NAVSAT, Radar or piloting; 2=LORAN
        or OMEGA; 3=Dead reckoning (probably from a fairly
        close, better position).
6-7. Ice concentration in tenths. Negative number is
        exponent of }10\mathrm{ for very low concentrations.
8-9 Direction from which predominant wave/swell comes,
                in tens of degrees, true.
    10 Wave height, Table 10.
    11 Wave period, always blank in this cruise.
12-13 Direction from which wind comes, in tens of degrees, true.
    14 Wind speed, Seaufort, from Table }17
15-17 Earometric pressure in miliibars, lacking.
            the first digit, if 1000 mb or greater.
18-20 Dry-bulb air temperature, with sign, in degrees C.
    21 Dry-bulb temperature, tenths of degrees.
22-24 Wet-bulb air Eemperature, with sign, in degrees C.
    25
        Wet-bulb temperature, tentrs of degrees.
        25 Blank.
    27 Present weather, from Table 21.
    28 Cloud type, from Table 25.
    29 Cloud amount, from Table 26.
    30 Visibility, from Table 27.
31 - 32 A tag on the station number used for multiple lowerings
        at or near the same location (numerical) or designating
        a helicopter station (H) or a simultaneous observation by
        the APL CTD (W). The latter two usages are not
        always applied.
33 - 36 A check value of the station number.
37 - 42 Record serial number.
```

Data Coding

Columns

Explanation

1-6	Pressure in decibars and two decimals, form xxx . $\mathrm{x} \times$
7-12	Temperature, degrees C, form xx. xxx
13-18	Salinity, $0 / 00$, form $\mathrm{xx} . \mathrm{xxx}$
19-25	Sound velocity, m/s, form xxxx. xx
26-32	Sigma-t, $\mathrm{kg} / \mathrm{m}^{3}$, form $\mathrm{xx} . \mathrm{xxxx}$
33-40	Serial number of record, form xxxxxxxx
42-48	Electrical conductivity ratio of UNESCO 1966, form
49-60	Not present in APL data; useless in NBIS data.

```
1//040m0546 J\n 12752.ng111.CIASS=?
    // RYロ~PORTVCIG
    //POET.STSIN nD**
    /*
```



```
    //GO.SYSIN no**
    //
```


$3105547001551704979092200 \cap ? 7017717$ 7
$34271113213 \kappa 099$ 3n 291707
$0.56 \quad 2.84332 .2771458 .02795 .7900$

1.41 2. 24772.2371459 .7275 .7105

1.05 2.24572 .2301459 .2575 .7105

4.11 2. $94432 \cdot 2401459.7 n 25.771 ?$

4.37 2. 84532.2411459 .1075 .7716
4. 55 2. 84532.2411458 .1025 .7220
$\begin{array}{ll}4.77 & 2.94532 .2421458 .1175 .7374 \\ 4.01 & 2.94532 .2471459 .1925 .7710\end{array}$
$\begin{array}{ll}4.01 & 2.94532 .2471459 .1125 .7310 \\ 5.05 & 2.94732 .2451459 .1225 .7240\end{array}$

Password: accNo	fleA	fNo	proj	inst	ship	startDate	cruise	atId
8700092	C022	319718	9999	$31 \mathrm{B7}$	31 NW	1985/09/05	TT8191	168502
8700092	$\mathrm{C022}$	319719	9999	31B7	31 NW	1984/08/22	TT8192	168503
8700092	C 022	319720	9999	$31 \mathrm{B7}$	31 NW	1981/10/17	TT8193	168504
8700092	F022	TT8191	9999	31B7	31 NW	1985/09/05	NULL	168505
8700092	F022	TT8192	9999	31B7	31 NW	1984/08/22	NULL	168506
8700092	F022	TT8193	9999	31B7	31 NW	1981/10/17	NULL	168507
8700092	C022	319721	9999	31B7	31NW	1980/02/29	TT8194	168508
8700092	F022	TT8194	9999	31B7	31NW	1980/02/29	NULL	168509

(8 rows affected)

```
Password:
```

	fleA	refNo	ship				endDate
8700092	C022	319718	31 NW	150	273	85/09/05	85/09/26
8700092	C022	319719	31 NW	331	425	84/08/22	84/09/16
8700092	C022	319720	31 NW	156	234	81/10/17	81/11/15
8700092	F022	TT8191	31NW	150	68030	85/09/05	85/09/26
8700092	F022	TT8192	31 NW	331	71498	84/08/22	84/09/16
8700092	F022	TT8193	31NW	156	41615	81/10/17	81/11/15
8700092	C022	319721	31 NW	67	67	80/02/29	80/04/02
8700092	F022	TT8194	31NW	67	12124	80/02/29	80/04/02

(8 rows affected)

[^0]:

[^1]: * Columns 49-60 are blank or meaningless in 1981-1984. They provided for an oxygen measurement never successfully accomplished.

