# **BODC Project Database Structure**

#### Introduction

A relational database is made up from tables. Each table contains one or more fields. Some of these fields, termed key fields, are contained in more than one table and provide the mechanism for linking tables, and hence the data they contain, together. If a key field occurs once in each of two tables, then a one to one relationship between the tables is established. If the key field occurs once in one table and many times in the other, then a one to many relationship exists between the tables.

The BODC Community Research Project databases are relational databases that have been built for the specific task of storing project data in a way where it may easily be found when required. The end result is an effective, if not elegant, design. Simple structures exist that match the data. These structures are extended in response to data sets supplied. However, as the databases have developed, certain patterns have been recognised in the data. In response to this, fully normalised structures (i.e. the type conventional database designers desire) have been developed. The advantage of these normalised structures is that providing the rules of their underlying data model are obeyed by the data, their scope may be expanded with no maintenance overheads. Their disadvantage is that significantly more work is required getting data in and getting data out.

We therefore have a situation in practice where simple and fully normalised structures exist side by side. Any spare resource is directed towards converting the simple structures into normalised structures, providing a clear advantage can be seen in doing the work. The structure of the database is therefore dynamic but it is supported by 'soft' documentation that can evolve in parallel.

# **Table Types**

The database may be considered as containing five types of table. The database is built on an event-based data model. In other words, something has to happen to generate the data stored. The primary information in the database therefore has to describe what these events were, where they happened and when they happened. This information is stored in the database primary index tables. In the following table definitions, the hot links to these tables are coloured red.

The data model assumes that the events are related to the data they generate by one to many relationships. These relationships are implemented in the database by

one or more secondary index tables. These tables also provide storage for metadata that are specific to a single type of event. The hot links to these tables in the table definition index are coloured green.

The third type of table is the fully normalised data table. These may be regarded as stable, long term entities within the database. Because the structures are normalised, it is not possible to obtain the sort of cross-tabulated output most users require using simple SQL queries. Consequently, data access tools are provided by BODC. The hot links to these tables in the table definition index are coloured blue.

The normalised data tables are supported by a series of code tables, such as the parameter dictionary, that together may be termed the dictionary tables. The hot links to these tables in the table definition index are coloured 'dark yellow'.

Finally, there are the simple-structured data tables. These may be effectively interrogated by simple SQL queries. However, they should be regarded as transient entities that may disappear from subsequent database releases. Obviously, if they do disappear, the data they contained will have been transferred to a fully normalised structure within the database. The hot links to these tables in the table definition index are coloured magenta (pale purple).

# **The Parameter Dictionary**

The parameter dictionary is an essential feature of the normalised data storage tables. The identification of parameters is based on 8-byte codes. These have been designed using a hierarchical model. The first four bytes may be considered as the 'parent'. This provides information on the parameter at a low level of detail. This parent has one or more 'child' 8-byte codes. These subdivide the parent into more detailed information.

This relationship is exploited in different ways. For example, chemical parameters have a parent field identifying the basic parameter with the children identifying different measurement protocols. Thus 'CPHL' is chlorophyll-a, but CPHLHPP1 is chlorophyll-a measured by reverse-phase HPLC on an acetone extract from a GF/F filter. For biological species codes the parent specifies the genus and the children the species.

There are a large number (thousands) of parameters coded in the database. Finding out what a given code means is straightforward. A query matching on field CPMUSG of table ZUSG will provide the answer.

However, specifying the parameter code for data retrievals requires some thought. The secret lies in the use of wild cards which any database management system can incorporate into query searches. The recommended technique is to use table ZUPM to identify the parent code of the parameter you require. A wild card may then be set up to include as many of the child codes as required. One word of warning. Always check the meanings of all codes covered by a wild card as there are traps

for the unwary. For example, the wild card CORG% covers both CORGCAP1 ("POC") and CORGCOD1 (DOC) which should not be merged into a single data set!

### **Documentation Structure**

This document contains two main sections. These are:

Table Definitions: A description of the fields contained in each table of the

database.

Linkage Definitions: Documentation that describes how the tables of the

database are linked together through their key fields.

TIP If you are looking for a particular type of data and don't know which tables you require, looking through the linkage definitions will provide a quick and easy way of finding out what you need to know.

# **Database Table Definitions**

This section provides a field level description of all the user-accessible tables in the OMEX and ODB databases.

## **Table ADCP**

This table contains the current velocity and returned signal amplitude profiles measured by shipboard Acoustic Doppler Current Profilers (ADCPs).

# **Table ADCPINDX**

This table is the ADCP profile inventory and stores relevant metadata.

### Table ARGOS

This table contains Lagrangian current data in the form of the tracks of drifting buoys or sediment traps tracked by Argos satellite or a following ship.

### Table BINCTD

This table contains the CTD profile data, averaged into either 1 db (casts shallower than 100 db) or 2 db bins. BINCTD also contains the "pseudo CTD" profiles derived from SeaSoar data.

### **Table BOTDATA**

This table contains analytical data on water and air samples. A very wide range of parameters is stored here.

### **Table BOTTLE**

This table provides an inventory of the water and air samples, collected by a variety of methods, held in the database. Note that the name BOTTLE is more of a historical relic than a description of current usage. Vital information, particularly the depth or height from which the sample was taken, is held in the table.

#### **Table C14DAT**

This table contains <sup>14</sup>C uptake (primary production) data from long period (generally 24 hour) on-deck and in-situ incubations, including size-fractionated data. The table may also be used to store P:I profiles.

### **Table C14HDR**

This table provides an inventory of the <sup>14</sup>C uptake (primary production) experiments held in the database. Vital metadata fields are included. The table also provides storage for column integrated data.

### **Table COREINDX**

This table provides an inventory of core samples. Note that an event can generate several cores by use of multiple corers or through sub-cores.

### **Table COREPROF**

This table contains the sample data from along-core profiles. One record is stored for each parameter measured on each sample in each profile. A wide range of parameters is stored.

### **Table CORESAMP**

This table contains the independent variables for the core profiles stored in the database.

### **Table CORETOT**

This table contains whole core sample data. These are either analyses undertaken on bulk core or grab samples or parameters derived from core profiles such as flux determinations. A wide range of parameters is stored.

## Table CPR\_COLOUR

This table contains the silk colour data (an indication of the chlorophyll concentration) from Continuous Plankton Recorder tows.

# Table CPR\_PHYTO

This table contains phytoplankton taxonomic data from Continuous Plankton Recorder tows.

# Table CPR\_ZOO

This table contains zooplankton taxonomic data from Continuous Plankton Recorder tows.

### Table CRSINDX

A number of the CRP databases contain data from more than one project. This table allows the user to identify which events were associated with which project by linking together the cruise fields from table EVENT. Metadata storage fields for each cruise are also provided.

## **Table CTDCAL**

This table contains the calibration coefficients applied to the CTD profiles by the BODC processing system.

### **Table CTDINDX**

This table provides an inventory of the CTD casts held in the database together with storage for CTD-specific information.

### **Table CTDTYP**

This is a code table that supports table CTDINDX by defining the mnemonics used to identify CTD instrument types.

### **Table EVENT**

An event is defined as any activity that results in the collection of data that are stored in the database. Table EVENT contains information on what the event was and where and when it occurred. It could therefore be considered as the most important table in the database and should certainly be involved at the start of any search for data.

# **Table EVENT\_COMM**

This is an extension of the EVENT table that carries a plain language comment field. This is only separated to make the EVENT table less cumbersome to list.

### **Table FORAMS**

Table FORAMS contains benthic foraminifera species distribution data from the OMEX project.

# Table G\_CODE

G\_CODE is a simple code table that defines the gear codes used in table EVENT.

### **Table INTBOT**

This table contains column-integrated, size-fractionated extracted chlorophyll data.

### **Table LHPR**

The LHPR table stores summary data for the major taxonomic groups from Longhurst-Hardy Plankton Recorder tows. Metadata for these tows are stored in table NETINDX.

### **Table MEGADAT**

Table MEGDAT contains data on benthic megafauna, subdivided into the principal taxonomic groups.

### **Table MEGAHEAD**

This table provides an inventory of the benthic megafauna samples present in the database. However, its primary purpose is to store data parameters pertaining to the whole catch rather than individual taxonomic groups.

## **Table MEIODAT**

Table MEIODAT contains benthic meiofauna taxonomic abundance data, including along-core profiles. Some nematode biomass data are also included.

### **Table MEIOHDR**

This table provides the independent variable for the data held in table MEIODAT.

## **Table MFDAT**

Table MFDAT contains data on benthic macrofauna.

# **Table MFHEAD**

This table provides an inventory of the benthic macrofauna samples held in the database. Storage is also provided for species diversity data.

#### **Table MOORINDX**

This table provides an inventory of the data series (generally individual instruments) pertaining to each mooring event.

# Table MOOR\_PARAMS

This is a code table providing definitions for the parameter mnemonics used in table MOORINDX.

#### Table MSP

This table may contain both depth profile and time series profile data collected by the Marine Snow Profiler (a quantitative photographic system, which can be mounted on the CTD or a mooring).

### **Table MTALDAT**

Table MTALDAT contains the results from trace metal uptake kinetics experiments.

## **Table MTALHDR**

This table provides an inventory of trace metal uptake kinetics experiments held in the database and provides storage for vital metadata in the form of the experimental conditions.

### **Table N15DAT**

This table contains <sup>15</sup>N uptake (new and regenerated production) data from long period (generally 24 hour) on-deck and in-situ incubations, including size-fractionated data.

### **Table N15HDR**

This table provides an inventory of the <sup>15</sup>N uptake (new and regenerated production) uptake experiments held in the database. Vital metadata fields are included. The table also provides storage for column integrated data.

### **Table NEPH**

The NEPH table holds the turbidity profile data as measured by CTD-mounted nephelometers.

### **Table NETINDX**

This table provides an inventory of individual net catches and allows for the 'one-to-many' relationship between catches and events. The table also provides storage for net haul metadata parameters and some data such as total catch volume and biomass.

#### **Table ORGCODE**

Table ORGCODE is a code table defining the data originator codes used in the database.

### Table P33DARK

P33DARK contains the results of phosphorus radioisotope uptake experiment dark control experiments.

## **Table P33DAT**

This table contains the data from radioactive phosphorus uptake experiments at varying light intensities.

### **Table P33HDR**

This table provides an inventory of the radioactive phosphate uptake experiments. Storage is provided for vital metadata and column-integrated data.

### **Table PRINDX**

This table provides an inventory of light profiles collected by profiling radiometers and the link between the EVENT and PRPROF tables. Storage is also provided for light profile metadata parameters.

### **Table PRPROF**

This table is used to store light profile data as measured by various types of profiling radiometers.

#### **Table RMT**

Table RMT provides storage for abundance and biomass data at the taxonomic level collected using the Remote Mid-water Trawl.

### **Table SSINDX**

This provides an inventory of the SeaSoar profiles held in the database, including the depth range covered by each profile.

#### Table STINDX

This table provides an inventory of sediment trap samples stored in the database and implements the 'one-to-many' relationship between a sediment trap deployment and the individual samples. These result from either traps at multiple depths and/or traps with multiple cups. Metadata parameters are also stored.

## **Table TRAPDATA**

Table TRAPDATA provides storage within a fully normalised schema for sediment trap analytical data and fluxes.

## **Table XBT**

This table contains the temperature profile data from expendable bathythermographs (XBTs).

### **Table XBTINDX**

This table contains an inventory of the XBT profiles held in the database with information on the type of probe used.

### **Table ZUCT**

This table is part of the parameter dictionary. Its function is to group the 4-byte 'parent' parameter codes into categories to enable them to be interrogated more easily.

### **Table ZUNT**

This table is part of the parameter dictionary. It is a code table that defines the codes used to represent parameter units.

### **Table ZUPM**

This table is part of the parameter dictionary. It contains the definitions of the 4-byte 'parent' parameter codes (i.e. the first four bytes of the parameter code).

#### **Table ZUSG**

This is the main table of the parameter dictionary, containing definitions of the full 8byte parameter codes.

# **Table ADCP**

# **Field Definitions**

| BEN BINDPTH PGOOD FPGOOD AMPL FAMPL ERRVEL FERRVEL VERT FVERT RELEW FRELEW FRELNS FRELNS SHPEW FSHPEW SHPNS FSHPNS ABSEW | NUMBER(6) NUMBER(7,1) NUMBER(4,1) CHAR(1) NUMBER(7,3) | BODC Event Number.  Depth of the ADCP data bin (m).  Percentage of good data returned for the bin.  Quality control flag on PGOOD.  Amplitude of the signal returned (dB).  Quality control flag on AMPL.  Velocity error (cm/s).  Quality control flag on ERRVEL.  Vertical velocity (cm/s).  Quality control flag on VERT.  Relative E-W velocity (cm/s).  Quality control flag on RELEW.  Relative N-S velocity (cm/s).  Quality control flag on RELNS.  Ship's velocity E-W (cm/s).  Quality control flag on SHPEW.  Ship's velocity N-S (cm/s).  Quality control flag on SHPNS.  Absolute E-W velocity (cm/s). |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          | ` '                                                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FABSNS                                                                                                                   | CHAR(1)                                                                                                                                                                                                                                                       | Quality control flag on ABSNS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# **Notes**

The convention used for quality control flags is blank for good data points, and 'M' for suspect data points identified by BODC quality control.

If bottom track velocities are available then these will be stored as the ship's velocities with an appropriate entry in the ADCPINDX table.

# **Table ADCPINDX**

## **Field Definitions**

| BEN<br>SHPFLG<br>HEAD | NUMBER(6)<br>CHAR(1)<br>NUMBER(8,4) | BODC event number. Platform velocity correction method flag. Correction factor applied to the ADCP data for differences between the ship's gyro and the ADCP heading. |
|-----------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HDFLG                 | CHAR(1)                             | Flag to specify whether HEAD has been applied to the data.                                                                                                            |
| AMP                   | NUMBER(8,4)                         | Scaling factor applied to the ADCP velocities.                                                                                                                        |
| AMPFLG                | CHAR(1)                             | Flag to specify whether AMP has been applied to the data.                                                                                                             |
| TIMINT                | NUMBER(4,2)                         | Time interval over which data were gridded (min).                                                                                                                     |
| BININT                | NUMBER(4,1)                         | Depth interval over which data were gridded (m).                                                                                                                      |
| BINCOM                | CHAR(40)                            | A comment on what the BINDPTH (bin depth) signifies.                                                                                                                  |
| VELCOM                | CHAR(40)                            | A comment on what the ADCP velocities represent.                                                                                                                      |
| COM                   | CHAR(40)                            | Any other comments on the data.                                                                                                                                       |

## **Notes**

The platform velocity correction method flag is set to 'S' if the ship's velocity was computed from navigation or 'B' if it was directly measured by ADCP bottom tracking. The latter is more accurate and more reliable but is only possible in relatively shallow water. Do **not** confuse these with the data quality control flags.

The misalignment angle (HEAD) and scaling factor AMP are obtained by the ADCP calibration protocols developed by Southampton Oceanography Centre (Pollard and Read, 1989).

If it is known that the corrections HEAD and AMP have been applied then the flag fields HDFLG and AMPFLG are set to 'Y'. Otherwise they are set to 'N'. If the values for HEAD and AMP are known then they are stored. Otherwise HEAD and AMP are set to 0 and 1 respectively.

The time interval is stored in decimal minutes (15 minutes 30 seconds stored as 15.5).

BINCOM contains a plain language definition of the bin depth (e.g. 'bin depth specifies the bottom of depth interval' ).

VELCOM contains information on the method used to determine the binned current velocities (e.g. 'velocity is averaged over the bin depth').

# Reference

Pollard, R.T. and Read, J.F. (1989). A Method for Calibrating Ship-mounted Acoustic Doppler Profilers and the Limitations of Gyro Compasses. *Journal of Atmospheric and Oceanic Technology*, 6, 859-865.

# **Table ARGOS**

# **Field Definitions**

| BEN   | NUMBER(6)   | BODC Event Number.                  |
|-------|-------------|-------------------------------------|
| DATIM | DATE        | Date and time of position fix.      |
| LAT   | NUMBER(8,5) | Latitude of position fix (°+ve N).  |
| LON   | NUMBER(8,5) | Longitude of position fix (°+ve E). |
| SST   | NUMBER(5,3) | Sea surface temperature (°C).       |
| SST_F | CHAR(1)     | Temperature quality control flag    |

### **Notes**

Please refer to the data documentation to obtain the drogue depths.

The convention used for the quality control flags is:

- K Uncertain/suspect value (source of quality control unknown).
- L Uncertain/suspect value (data originator's quality control).
- M Uncertain/suspect value (BODC quality control).
- O Uncertain/suspect value (user quality control).

The flag channel is set blank for good data.

# **Table BINCTD**

### **Field Definitions**

| BEN    | NUMBER(6)   | BODC event number.                              |
|--------|-------------|-------------------------------------------------|
| PRESS  | NUMBER(5,1) | Pressure (db).                                  |
| TEMP   | NUMBER(5,3) | Temperature (°C).                               |
| SALIN  | NUMBER(5,3) | Practical salinity (PSU).                       |
| SIGMA  | NUMBER(5,3) | Potential density anomaly (kg/m <sup>3</sup> ). |
| O2     | NUMBER(4,1) | Dissolved oxygen (μM).                          |
| O2SAT  | NUMBER(4,1) | Oxygen saturation (%).                          |
| CPHYL  | NUMBER(4,2) | Chlorophyll (mg/m <sup>3</sup> ).               |
| ATTEN  | NUMBER(5,3) | Optical attenuance (per m).                     |
| DWIR   | NUMBER(5,1) | Downwelling irradiance ( $\mu E/m^2/s$ ).       |
| UWIR   | NUMBER(4,1) | Upwelling irradiance (μE/m <sup>2</sup> /s).    |
| POTEMP | NUMBER(5,3) | Potential temperature (°C).                     |
| POAT   | NUMBER(5,3) | Potential attenuance (per m).                   |
| POAT   | NUMBER(5,3) | Potential attenuance (per m).                   |

### **Notes**

The pressure value signifies the midpoint of the bin. Thus, a pressure of 1.0 db signifies a bin extending from 0 db to 2 db (assuming that the cast was deeper than 100 db).

The density parameter computed is the potential density anomaly calculated at 0 db and is numerically equivalent to the parameter known as sigma-theta (computed by substituting potential temperature into the UNESCO SVAN function).

Oxygen saturation has been computed using the algorithm of Benson and Krause (1984).

UNIX users should note that CTD data are only loaded into BINCTD once BODC has full confidence in the CTD calibrations. Our normal practice is to leave this operation until near the end of the project to allow the maximum time for feedback from the user community. Prior to loading into BINCTD, the data are held uncalibrated in holding tables that are inaccessible to users through SQL. If these data are required, the **CTDLIDST** utility should be used which will retrieve the data and dynamically apply any calibrations required.

For CD-ROM database releases, all CTD data have been incorporated into BINCTD.

# Reference

Benson, B.B., Krause D. (1984). The concentration and isotopic fractionation of oxygen dissolved in fresh water and sea water in equilibrium with the atmosphere. *Limnol.Oceanogr.*, <u>29</u>, 620-632.

## Table BOTDATA

### **Field Definitions**

| IBTTLE | NUMBER(6) | BODC bottle/sample identifier.  |
|--------|-----------|---------------------------------|
| CPCODE | CHAR(8)   | Parameter code.                 |
| FPVAL  | NUMBER    | Parameter value.                |
| CPFLAG | CHAR(1)   | Parameter quality control flag. |
| IORGRF | NUMBER(6) | Originator's reference.         |
| IDOCRF | NUMBER(8) | Document reference.             |
| CILOAD | CHAR(6)   | Record creation date (yymmdd).  |
| TSGMOD | DATE      | Last modification time stamp.   |
|        |           |                                 |

#### **Notes**

The primary key is formed from the three fields, IBTTLE, CPCODE and IORGRF. In other words, the table contains one row for each parameter measurement on each water or air sample by a given data originator.

The parameter code consists of 8 bytes which describe the parameter measured in some detail. The parameter code definitions are stored in the parameter dictionary (see the table names starting with 'Z').

The parameter flag field serves two purposes. First, it identifies parameter values identified as problems during quality control procedures. Different codes are used to differentiate between originator, BODC and user quality control. Secondly, it is used to identify samples where the measured parameter was either below detection limit or saturated the measuring apparatus. In these cases the data values are set to the detection limit (zero if no detection limit was specified) or the saturation value respectively. If no flag value has been assigned (signifying good data), the CPFLAG field is blank.

The flag values which may be encountered are:

- K Uncertain/suspect value (source of quality control unknown).
- L Uncertain/suspect value (data originator's quality control).
- M Uncertain/suspect value (BODC quality control).
- O Uncertain/suspect value (user quality control)
- T Nearest value to bottle firing depth
- < Below detection limit.
- > In excess of stated value.

The 'T' flag is only found on records created for water bottle samples from CTD profile data. It means that no data were found at the bottle firing pressure. Instead, the nearest data value has been taken, providing this was within 2 db of the required pressure.

The originator's reference field allows the suppliers of individual data values to be identified. The objective when allocating these linkages is to provide a point of contact for users of the data to approach when initiating collaboration that will endure beyond the end of a project. Consequently, linkages have been assigned at the PI level and do not necessarily specify the individual who actually did the analysis.

The capability to link data to its originator only came about when the normalised structure was implemented. Linkages have been retrospectively applied to the entire data holding during restructuring which was done using cruise reports and the collective memories of BODC staff and participating scientists. If we've got anything wrong, please don't bear a grudge: just let us know and we'll fix it. Likewise, anyone who feels aggrieved for any reason about these code allocations should discuss it with us so that any problems may be quickly rectified.

Codes are used to eliminate potential problems with misspellings and the like. The codes used are documented in the table ORGCODE.

Document references have not yet been implemented so the IDOCRF field is currently always null.

# **Table BOTTLE**

### **Field Definitions**

| BEN    | NUMBER(6)   | BODC event number.                           |
|--------|-------------|----------------------------------------------|
| IBTTLE | NUMBER(6)   | A unique identifier assigned by BODC to each |
|        |             | sample.                                      |
| MINP   | NUMBER(5,1) | Minimum pressure for the sample (db).        |
| MAXP   | NUMBER(5,1) | Maximum pressure for the sample (db).        |
| DEPTH  | NUMBER(6,2) | Sampling depth (m).                          |
| BOTYP  | CHAR(4)     | Bottle/sample type identifier.               |
| FLAG   | CHAR(1)     | Problem indicator flag.                      |

#### **Notes**

Table BOTTLE was originally conceived for the management of water bottle data. However, as the BODC databases developed, it was realised that the table could be utilised for other data types. Data currently held include pumped air and water samples, stand-alone pump (SAP) samples, bucket samples and air bottle samples.

The most important function of this table is to implement the 'one-to-many' relationship that may exist between samples and events. The table contains one row per sampling depth (multiple samples at a single depth are considered as one). Each record in EVENT can 'own' as many records as it likes in BOTTLE through the foreign key field BEN. Hence each EVENT can include many sampling depths.

The relationship between MINP, MAXP and DEPTH requires some explanation.

MINP and MAXP only have relevance to bottles on a CTD rosette. In this case, bottle 'depths' are frequently logged as pressure ranges during CTD screening and loaded into BOTTLE. Subsequently, DEPTH (the distance from the surface to the midpoint of the bottle) is derived by applying a pressure calibration to MINP and MAXP, correcting for CTD frame geometry, and applying the standard conversion from pressure to depth. In order to allow for pressure calibration drift, the minimum value is constrained at 0.5 m. The fields MINP and MAXP provide a direct linkage between BOTTLE and the CTD data which is why they are retained.

For other sample types, DEPTH is assigned a value from reports or logs and MINP and MAXP are left null. Note that air samples have negative depths to indicate height above sea level.

The BOTYP field specifies how the sample was collected. For water bottle data, this field identifies the type of water bottle used through the following codes.

GFnn GoFlo

LNnn Lever-action Niskin (external spring)

NInn Niskin NOnn NIO bottle NXnn NOEX bottle

TRnn Transparent (marine snow catcher)
PPnn Manually filled polypropylene bottle

KNnn Knudsen bottle

G300 Large volume (300 litre) radionuclide sampler

The 'nn' specifies the capacity of the water bottle in litres.

A number of other codes are used for other sampling methods:

BWS Benthic water sampler SAP Stand-alone pump

PUMP Pumped sample (water or air pump)

BUCK Bucket on a rope

AIRB Air bottle

The FLAG field is used to indicate known problems. The coding convention used is:

B Filter burst (SAP samples)

L Contamination through leakage suspected

M No sample obtained

O Bottles fired in incorrect order

The 'O' flag requires a little more explanation. This is used to flag stations where there was obvious confusion from the sample data set about which bottle was fired at which depth. These problems have been resolved during data load, but the flag is included to remind users that there may be problems with data from that station obtained outside the database.

# **Table C14DAT**

### **Field Definitions**

| EXPREF | CHAR(6)     | BODC experiment reference.                                            |
|--------|-------------|-----------------------------------------------------------------------|
| IBTTLE | NUMBER(6)   | BODC bottle reference number.                                         |
| DEPTH  | NUMBER(4,1) | Depth (or depth equivalent) at which the sample was incubated.        |
| LIGHT  | NUMBER(4,1) | Fraction of available light illuminating the sample (%).              |
| FLIGHT | NUMBER(5,1) | Light level in a PvI profile (μE/m²/s)                                |
| PPMIC  | NUMBER(6,3) | Microplankton production (mg C/m <sup>3</sup> /incubation duration).  |
| PPNAN  | NUMBER(6,3) | Nanoplankton production (mg C/m <sup>3</sup> / incubation duration).  |
| PPPIC  | NUMBER(6,3) | Picoplankton production (mg C/m <sup>3</sup> / incubation duration).  |
| PPTOT  | NUMBER(6,3) | Total production (mg C/m <sup>3</sup> / incubation duration).         |
| SPPMIC | NUMBER(5,3) | Standard deviation of microplankton production                        |
|        |             | (mg C/m <sup>3</sup> / incubation duration).                          |
| SPPNAN | NUMBER(5,3) | Standard deviation of nanoplankton production                         |
|        |             | (mg C/m <sup>3</sup> / incubation duration).                          |
| SPPPIC | NUMBER(5,3) | Standard deviation of picoplankton production                         |
|        |             | (mg C/m <sup>3</sup> / incubation duration).                          |
| SPPTOT | NUMBER(5,2) | Standard deviation of total production (mg C/m3/incubation duration). |

#### **Notes**

The IBTTLE field provides a link to the source of the water used in the production experiment. Note that it is possible to collect water from a single source and incubate it under a variety of conditions. In such cases, the bottle reference number will be repeated on several C14DAT records.

The terms 'microplankton', 'nanoplankton' and 'picoplankton' are loose descriptions and their precise meaning may vary from one production experiment to the next. Precise definitions are held in C14HDR.

The fields DEPTH and LIGHT are provided as alternative indicators of the conditions under which the sample was incubated. For in-situ incubations, LIGHT will generally be null and DEPTH represents the actual depth of incubation. For on-

deck experiments, LIGHT represents the percentage of ambient light reaching the sample: i.e. the light transmission of the incubation screen. DEPTH, where present, is computed from this using either CTD downwelling irradiance or beam attenuance data.

The field PPTOT is either the result of a non size-fractionated experiment or the summation of size fraction data. If the size fractions have been summed the standard deviation for the total field has been set to the square root of the sum of the squares of the size fraction standard deviations. As a general rule, if the size fraction columns are non-null then the total uptake values have been computed and not individually measured.

The units of uptake are per incubation duration as specified in the INCDUR field of table C14HDR. For in-situ and on-deck incubations this will normally, **but not always**, be 24 hours. In the case of light gradient incubations, where the light intensity is constant throughout the incubation, it is usual for the uptake rate to be quoted per hour. In these cases, the incubation duration has been set to 1 event though it is probable that the samples were actually incubated for longer than this.

# **Table C14HDR**

### **Field Definitions**

| EXPREF<br>TYPE                       | CHAR(6)<br>CHAR(2)                           | Experiment reference (assigned by BODC). Experiment type code. (OD for on deck incubations, IS for in-situ experiments, PI for PvI experiments). |
|--------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| BENCOL                               | NUMBER(6)                                    | BODC event number of the water collection event.                                                                                                 |
| BEN                                  | NUMBER(6)                                    | BODC event number of associated production rig deployment.                                                                                       |
| SDATE<br>INCDUR<br>COMM              | DATE<br>NUMBER(3,1)<br>CHAR(20)              | Date and time of the start of the incubation. Incubation duration in hours. Plain language comment field.                                        |
| DEPINT                               | NUMBER(4,1)                                  | Depth to which the integrated production was calculated.                                                                                         |
| INTMIC                               | NUMBER(6,2)                                  | Integrated productivity for the microplankton fraction (mg C/m <sup>2</sup> /day).                                                               |
| INTNAN                               | NUMBER(6,2)                                  | Integrated productivity for the nanoplankton fraction (mg C/m <sup>2</sup> /day).                                                                |
| INTPIC                               | NUMBER(6,2)                                  | Integrated productivity for the picoplankton fraction (mg C/m²/day).                                                                             |
| INTTOT<br>MICDEF<br>NANDEF<br>PICDEF | NUMBER(6,2)<br>CHAR(8)<br>CHAR(8)<br>CHAR(8) | Total integrated productivity (mg C/m <sup>2</sup> /day). Microplankton definition. Nanoplankton definition. Picoplankton definition.            |

#### **Notes**

Fields BENCOL and BEN require some explanation as the presence of two BODC event numbers in a single table may at first sight seem confusing. BENCOL specifies where the water used in the production experiment came from. In some ways it is superfluous because the same information may be derived from the IBTTLE field in C14DAT. However, it is included to simplify the task of linking integrated production data held in table C14HDR to the place and time to which they relate.

BEN is a reference given to some production experiments. This invariably relates to in-situ experiments where a rig has been cast adrift from the ship. On-deck incubations have never been considered as events. The reason for this is more historical than logical: the event entries are drawn up from ship's logs and whilst a

rig being deployed has often (but not always) merited a log entry, the placing of samples in an on-deck incubator has not.

Integrated production data are only included if they were computed and supplied by the data originator. They are not routinely determined by BODC.

# Table COREINDX

### **Field Definitions**

ICORE NUMBER(6) BODC core identifier.

BEN NUMBER(6) BODC event number for the coring event.
ORGREF CHAR(16) Identifier given to the core on the cruise.

FLAG CHAR(1) Flag.

#### **Notes**

It may come as something of a surprise that this table has a 'one-to-many' relationship to manage. However, the multicorer produces (ideally!) up to 12 cores from a single deployment which may be used for different purposes or for replicate analyses and hence require separate storage. Another possible 'one-to-many' relationship is the case where a series of sub-cores is taken from a box-core sample.

The flag is set to 'F' if the corer failed to return a sample or to 'S' if the corer obtained stones and no sediment. Otherwise it is left null

# **Table COREPROF**

### **Field Definitions**

| ICSAMP | NUMBER(6) | BODC core sample reference number. |
|--------|-----------|------------------------------------|
| CPCODE | CHAR(8)   | Parameter code.                    |
| FPVAL  | NUMBER    | Parameter value.                   |
| CPFLAG | CHAR(1)   | Parameter quality control flag.    |
| IORGRF | NUMBER(6) | Originator's reference.            |
| IDOCRF | NUMBER(6) | Document reference.                |
| CILOAD | CHAR(6)   | Record creation date (yymmdd).     |
| TSGMOD | DATE      | Last modification time stamp.      |
|        |           |                                    |

#### **Notes**

The primary key is formed from the three fields, ICSAMP, CPCODE and IORGRF. In other words, the table contains one row for each parameter measurement on each core segment or profile point by a given data originator.

The parameter code consists of 8 bytes which describes the parameter measured in some detail. The parameter code definitions are stored in the parameter dictionary (see the table names starting with 'Z').

The parameter flag field serves two purposes. First, it identifies parameter values identified as problems during quality control procedures. Different codes are used to differentiate between originator, BODC and user quality control. Secondly, it is used to identify samples where the measured parameter was either below detection limit or saturated the measuring apparatus. In these cases the data values are set to the detection limit or the saturation value respectively. If no flag value has been assigned (signifying good data), the CPFLAG field is blank.

The flag values which may be encountered are:

- K Uncertain/suspect value (source of quality control unknown).
- L Uncertain/suspect value (data originator's quality control).
- M Uncertain/suspect value (BODC quality control).
- O Uncertain/suspect value (user quality control)
- < Below detection limit.
- > In excess of stated value.

The originator's reference field allows the suppliers of individual data values to be identified. The objective when allocating these linkages is to provide a point of contact for users of the data to approach when initiating collaboration that will

The 'T' flag is only found on records created for water bottle samples from CTD profile data. It means that no data were found at the bottle firing pressure. Instead, the nearest data value has been taken, providing this was within 2 db of the required pressure.

The originator's reference field allows the suppliers of individual data values to be identified. The objective when allocating these linkages is to provide a point of contact for users of the data to approach when initiating collaboration that will endure beyond the end of a project. Consequently, linkages have been assigned at the PI level and do not necessarily specify the individual who actually did the analysis.

The capability to link data to its originator only came about when the normalised structure was implemented. Linkages have been retrospectively applied to the entire data holding during restructuring which was done using cruise reports and the collective memories of BODC staff and participating scientists. If we've got anything wrong, please don't bear a grudge: just let us know and we'll fix it. Likewise, anyone who feels aggrieved for any reason about these code allocations should discuss it with us so that any problems may be quickly rectified.

Codes are used to eliminate potential problems with misspellings and the like. The codes used are documented in the table ORGCODE.

Document references have not yet been implemented so the IDOCRF field is currently always null.

# **Table CORESAMP**

## **Field Definitions**

| ICSAMP | NUMBER(6)   | BODC core sample reference number.                 |
|--------|-------------|----------------------------------------------------|
| ICORE  | NUMBER(6)   | BODC core reference number.                        |
| DIST   | NUMBER(7,3) | Distance from the top of the core to the mid-point |
|        |             | of the sample (cm).                                |
| SEGLEN | NUMBER(4,2) | Thickness of the sample segment (cm).              |

## **Notes**

This table provides the independent variable for core profiles. This is defined as the distance from the top of the core to the mid-point of the sample. Thus for instrumental profiles it will be the distance of the probe tip from the top of the core. For cores sectioned into slabs, it will be the distance from the middle of the slab to the top of the core. Negative values are possible and indicate samples of, or in, the water overlying the core.

The table also includes a resolution parameter, SEGLEN. This gives the slab thickness for sectioned cores. For probe profiles it is either set zero or to the size of the probe tip if known.

## Table CORETOT

### **Field Definitions**

| ICORE  | NUMBER(6) | BODC core reference number.     |
|--------|-----------|---------------------------------|
| CPCODE | CHAR(8)   | Parameter code.                 |
| FPVAL  | NUMBER    | Parameter value.                |
| CPFLAG | CHAR(1)   | Parameter quality control flag. |
| IORGRF | NUMBER(6) | Originator's reference.         |
| IDOCRF | NUMBER(6) | Document reference.             |
| CILOAD | CHAR(6)   | Record creation date (yymmdd).  |
| TSGMOD | DATE      | Last modification time stamp.   |
|        |           |                                 |

#### **Notes**

The primary key is formed from the two fields, ICORE and CPCODE. In other words, the table contains one row for each parameter measurement on the whole core or grab sample.

The parameter code consists of 8 bytes which describe the parameter measured in some detail. The parameter code definitions are stored in the parameter dictionary (see the table names starting with 'Z').

The parameter flag field serves two purposes. First, it identifies parameter values identified as problems during quality control procedures. Different codes are used to differentiate between originator, BODC and user quality control. Secondly, it is used to identify samples where the measured parameter was either below detection limit or saturated the measuring apparatus. In these cases the data values are set to the detection limit or the saturation value respectively. If no flag value has been assigned (signifying good data), the CPFLAG field is blank.

The flag values which may be encountered are:

- K Uncertain/suspect value (source of quality control unknown).
- L Uncertain/suspect value (data originator's quality control).
- M Uncertain/suspect value (BODC quality control).
- O Uncertain/suspect value (user quality control)
- < Below detection limit.
- > In excess of stated value.

The originator's reference field allows the suppliers of individual data values to be identified. The objective when allocating these linkages is to provide a point of contact for users of the data to approach when initiating collaboration that will

The 'T' flag is only found on records created for water bottle samples from CTD profile data. It means that no data were found at the bottle firing pressure. Instead, the nearest data value has been taken, providing this was within 2 db of the required pressure.

The originator's reference field allows the suppliers of individual data values to be identified. The objective when allocating these linkages is to provide a point of contact for users of the data to approach when initiating collaboration that will endure beyond the end of a project. Consequently, linkages have been assigned at the PI level and do not necessarily specify the individual who actually did the analysis.

The capability to link data to its originator only came about when the normalised structure was implemented. Linkages have been retrospectively applied to the entire data holding during restructuring which was done using cruise reports and the collective memories of BODC staff and participating scientists. If we've got anything wrong, please don't bear a grudge: just let us know and we'll fix it. Likewise, anyone who feels aggrieved for any reason about these code allocations should discuss it with us so that any problems may be quickly rectified.

Codes are used to eliminate potential problems with misspellings and the like. The codes used are documented in the table ORGCODE.

Document references have not yet been implemented so the IDOCRF field is currently always null.

# Table CPR\_COLOUR

# **Field Definitions**

BEN NUMBER(6) BODC event number.

COL\_INDEX NUMBER(5,1) Sample colour index (arbitrary units).

## **Notes**

The colour index is a visual estimate of how 'green' the silk appears. The higher the value, the higher the chlorophyll concentration in the water sampled.

# **Table CPR\_PHYTO**

# **Field Definitions**

BEN NUMBER(6) BODC event number.

TAXON CHAR(40) Name of taxon or group of taxa.

TOTABUND NUMBER Estimated abundance of taxon or group of taxa in

the total sample.

## **Notes**

The estimated abundance is the 'accepted value' for the CPR quantification class divided by the fraction of the sample counted. For phytoplankton, the quantification class definitions are as follows:

| Accepted value | Class Limits |
|----------------|--------------|
|                |              |
| 0              | Presence     |
| 1.5            | 1-2          |
| 3.5            | 3-4          |
| 6.5            | 6-7          |
| 9.5            | 9-10         |
| 13             | 12-14        |
| 17             | 16-18        |
| 22.5           | 21-24        |
| 30             | 28-32        |
| 42             | 38-46        |
| 75             | 60-90        |

# Table CPR\_ZOO

# **Field Definitions**

BEN NUMBER(6) BODC event number.

TAXON CHAR(40) Name of taxon or group of taxa.

TOTABUND NUMBER Estimated abundance of taxon or group of taxa in

the total sample.

## **Notes**

The estimated abundance is the 'accepted value' for the CPR quantification class divided by the fraction of the sample counted. For zooplankton, the quantification class definitions are as follows:

| Accepted value | Class Limits |
|----------------|--------------|
|                |              |
| 0              | Presence     |
| 1              | 1-1          |
| 2              | 2-2          |
| 3              | 3-3          |
| 6              | 4-11         |
| 17             | 12-25        |
| 35             | 26-50        |
| 75             | 51-125       |
| 160            | 126-250      |
| 310            | 251-500      |
| 640            | 501-1000     |
| 1300           | 1001-2000    |
| 2690           | 2001-4000    |

# **Table CRSINDX**

# **Field Definitions**

| CRUISE        | CHAR(8)  | BODC cruise mnemonic,                           |
|---------------|----------|-------------------------------------------------|
| PROJECT       | CHAR(12) | Mnemonic of the project with which the cruise   |
|               |          | was associated.                                 |
| PSO           | CHAR(20) | Cruise chief scientist.                         |
| COUNTRY       | CHAR(20) | Country responsible for organising the cruise.  |
| <b>TBEGNS</b> | DATE     | Date the cruise sailed.                         |
| TENDS         | DATE     | Date the cruise docked.                         |
| LOCATION      | CHAR(80) | Plain language description of the area studied. |
| COMM          | CHAR(60) | Plain language comment field.                   |

# **Notes**

This table allows events associated with a particular project to be identified as well as providing limited background information on cruises.

# **Table CTDCAL**

### **Field Definitions**

| BEN FPCOR FCSLOP FCIRR FCCEPT FUSLOP FUCEPT FDSLOP FDCEPT | NUMBER(6)<br>NUMBER(5,2)<br>NUMBER(7,4)<br>NUMBER(8,7)<br>NUMBER(7,4)<br>NUMBER(7,4)<br>NUMBER(7,4)<br>NUMBER(7,4)<br>NUMBER(7,4) | BODC event number.  Pressure correction (db). Chlorophyll calibration slope. Chlorophyll calibration irradiance term. Chlorophyll calibration intercept. Upwelling irradiance calibration slope. Upwelling irradiance calibration intercept. Downwelling irradiance calibration slope. Downwelling irradiance calibration intercept. |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FBASOF                                                    | NUMBER(5,2)                                                                                                                       | Distance between the CTD pressure sensor and the base of the water bottle (m).                                                                                                                                                                                                                                                       |
| FTOPOF                                                    | NUMBER(5,2)                                                                                                                       | Distance between the CTD pressure sensor and the top of the water bottle (m).                                                                                                                                                                                                                                                        |
| FTEMOF                                                    | NUMBER(5,2)                                                                                                                       | Distance between the CTD pressure sensor and the reversing thermometer (m).                                                                                                                                                                                                                                                          |
| FSSLOP                                                    | NUMBER(7,5)                                                                                                                       | Salinity calibration slope.                                                                                                                                                                                                                                                                                                          |
| FSCEPT                                                    | NUMBER(7,5)                                                                                                                       | Salinity calibration intercept.                                                                                                                                                                                                                                                                                                      |
| FTSLOP                                                    | NUMBER(7,5)                                                                                                                       | Temperature calibration slope.                                                                                                                                                                                                                                                                                                       |
| FTCEPT                                                    | NUMBER(7,5)                                                                                                                       | Temperature calibration intercept.                                                                                                                                                                                                                                                                                                   |
| FOSLOP                                                    | NUMBER(6,3)                                                                                                                       | Oxygen calibration slope.                                                                                                                                                                                                                                                                                                            |
| FOCEPT                                                    | NUMBER(6,3)                                                                                                                       | Oxygen calibration intercept.                                                                                                                                                                                                                                                                                                        |
| FSMSLOP                                                   | NUMBER(7,5)                                                                                                                       | Total suspended matter calibration slope.                                                                                                                                                                                                                                                                                            |
| FSMCEPT                                                   | NUMBER(7,5)                                                                                                                       | Total suspended matter calibration intercept.                                                                                                                                                                                                                                                                                        |
| FOMSLOP                                                   | NUMBER(7,5)                                                                                                                       | Organic suspended matter calibration slope.                                                                                                                                                                                                                                                                                          |
| FOMCEPT                                                   | NUMBER(7,5)                                                                                                                       | Organic suspended matter calibration intercept.                                                                                                                                                                                                                                                                                      |
| FIMSLOP                                                   | NUMBER(7,5)                                                                                                                       | Inorganic suspended matter calibration slope.                                                                                                                                                                                                                                                                                        |
| FIMCEPT                                                   | NUMBER(7,5)                                                                                                                       | Inorganic suspended matter calibration intercept.                                                                                                                                                                                                                                                                                    |

## **Notes**

This table contains one row per CTD cast and therefore allows each CTD to have a separate calibration. However, in most cases calibrations have been set up on a cruise by cruise basis.

In the case of UK WOCE and some of the OMEX data, the CTD data are supplied to BODC fully calibrated by the data originator. In such cases, CTDINDX records are set up with dummy values which have been set up to ensure the correct functioning of the BODC **ctdlist** software. Some transformation of the data is also necessary in

these cases. For example, log transforms are applied to parameters which have an exponential calibration applied by **ctdlist**.

Each calibration and its method of determination is now discussed.

#### **Rig Geometry**

The fields FBASOF, FTOPOF and FTEMOF contain the information required to compute the true water bottle depth from the CTD pressure channel. FTEMOF is used when extracting calibration temperatures.

The water bottle depth for a given CTD pressure reading (calibrated and converted to depth) is given by:

This equation assumes bottle depth to be defined as the depth to the midpoint of the water bottle. The depth of the reversing thermometer is obtained by simply subtracting FTEMOF from the calibrated and converted CTD pressure reading.

The values used in these fields were obtained from actual measurements of the CTD rigs.

#### Pressure

The pressure correction, FPCOR, is a simple offset which is added to the uncalibrated CTD pressure. It is derived by consideration of data logged when the CTD was obviously out of the water.

#### **Temperature**

The temperature calibration has two components, FTSLOP and FTCEPT, which are applied to the uncalibrated temperature using the equation:

The temperature calibration is derived by comparison of the CTD temperature channel with calibrated digital reversing thermometer data for a specified cruise. A mean offset is computed after rejection of suspect reversing thermometer readings and stations where the reversing thermometers were fired on a temperature gradient.

In most cases, the accuracy of CTD resistance thermometers exceeds that of the digital reversing thermometers in common use. Consequently, the calibration coefficients are set to 1 and zero unless a problem is suspected with the CTD calibration.

### **Salinity**

The salinity calibration is identical in form to the temperature calibration and has been derived in a similar manner using water bottle samples assayed on a bench salinometer.

### Chlorophyll

The chlorophyll concentration (in mg chlorophyll  $a/m^3$ ) may be obtained from the fluorometer voltage using the following equation:

```
CHLOROPHYLL = EXP (VOLTS * FCSLOP + FCIRR * DWIR + FCCEPT)
```

The chlorophyll calibrations were set up by multiple regression of fluorometer voltages and downwelling irradiance (at the water bottle firing depths) against the log of the associated extracted chlorophyll measurements. The calibration was done on quality controlled data.

It should be noted that, on some cruises, the FCIRR term is zero because no downwelling irradiance data were available (for example the DI183 calibration was done on samples taken from pre-dawn casts).

#### Oxygen

The oxygen calibration is of the form:

and is derived by regression of CTD channel values at the bottle firing depths against Winkler titration results. On cruises where underway oxygen data were available, the surface CTD values (averaged over the top 3m after screening) are compared with the calibrated underway oxygen values to provide additional calibration data.

#### **Suspended Load**

The suspended matter calibrations are of the form:

The calibrations have been obtained by regression of beam attenuance against gravimetric determinations of suspended load. Organic sediment load was determined by loss on ignition of the gravimetric samples.

It should be noted that suspended matter calibrations on deep water transmissometer data are extremely rare as huge quantities of water need to be filtered to obtain the necessary gravimetric data.

### Irradiance

The raw irradiance (upwelling and downwelling) data are held as voltages. These are calibrated using the equation:

IRRADIANCE = EXP (VOLTS\*SLOPE + INTERCEPT)

This returns calibrated values in units of  $\mu W/cm^2$ . For the PML 2-pi PAR meters currently used on CTDs on the NERC ships, an empirical calibration factor (0.0375) has been determined to convert these data into  $\mu E/m^2/s$ . The calibration is only valid over the range -1.5V to +1V.

## **Table CTDINDX**

#### **Field Definitions**

| BEN    | NUMBER(6)   | BODC event number.                             |
|--------|-------------|------------------------------------------------|
| TBEGNC | DATE        | Date/time of the start of the downcast.        |
| TENDC  | DATE        | Date/time of the end of the downcast.          |
| MAXP   | NUMBER(5,1) | Maximum pressure in the downcast (db).         |
| FMAXP  | CHAR(1)     | Set to 'C' if the pressure calibration held in |
|        |             | table CTDCAL has been applied to MAXP.         |
|        |             | Otherwise left null.                           |
| EXTCO  | NUMBER(5,3) | Downwelling irradiance extinction coefficient. |
| MLD    | NUMBER(3,1) | Mixed layer depth (m).                         |
| EZD    | NUMBER(4,1) | Depth to the base of the euphotic zone (m).    |
| TYPE   | CHAR(3)     | Type code of the CTD used (i.e. NB3 for Neil   |
|        |             | Brown Mk. III).                                |

The downcast start and end times have been derived from the CTD data time channel and may be used to regenerate that channel if required.

The fields EXTCO, MLD and EZD were set up for the BOFS programme. In practice, it has been found that providing universally acceptable algorithms for their computation is an impossible task. Consequently, current practice is to leave the fields null unless agreed values are provided by the scientific community.

# **Table CTDTYP**

# **Field Definitions**

CHAR(3) CHAR(30) TYPE

CTD type code mnemonic.
Plain language definition of the mnemonic. DESCR

### **Table EVENT**

### **Field Definitions**

| BEN    | NUMBER(6)   | BODC event number. A unique numerical identifier assigned each event.   |
|--------|-------------|-------------------------------------------------------------------------|
| OID    | CHAR(12)    | What the event was known as during the cruise (originator's identifier) |
| GCODE  | CHAR(8)     | Code used to specify the gear pertaining to the event.                  |
| TBEGNS | DATE        | Event start date/time (UT).                                             |
| TENDS  | DATE        | Event end date/time (UT).                                               |
| LAT    | NUMBER(7,5) | Average latitude for event (°+ve North).                                |
| LON    | NUMBER(7,5) | Average longitude for deployment (°+ve East).                           |
| VARLAT | NUMBER(7,5) | Maximum deviation of latitude from mean during station.                 |
| VARLON | NUMBER(7,5) | Maximum deviation of longitude from mean during station.                |
| WDEPTH | NUMBER(5,1) | Average bathymetric depth for the event (m).                            |
| LATS   | NUMBER(7,5) | Latitude at time TBEGNS (°+ve North).                                   |
| LONS   | NUMBER(7,5) | Longitude at time TBEGNS (°+ve East).                                   |
| LATE   | NUMBER(7,5) | Latitude at time TENDS (°+ve North).                                    |
| LONE   | NUMBER(7,5) | Longitude at time TENDS (°+ve East).                                    |
| CRUISE | CHAR(8)     | Cruise mnemonic.                                                        |
| SITE   | CHAR(12)    | Fixed station name.                                                     |

#### **Notes**

This table has been built from the best available information from cruise reports, log sheets and information accompanying data. Automatically logged navigation has been used to match times and positions wherever possible.

There are two types of event, point events and traverse events.

Point events may be considered as those events that effectively happen at a fixed position. Their positions are specified by the fields LAT, LON, VARLAT and VARLON with the other four position fields left null.

Traverse events, such as tows and trawls, involve the ship steaming a significant distance. In this case, the start and end positions are stored in LATS, LONS, LATE and LONE. Note that some point events have data entered into the point event position fields to allow them to be handled as very low resolution points as required. Water depths are only included for point events.

Wherever possible, the fields LAT and LON are derived by averaging the data from the ship's navigation log over the event duration. VARLAT and VARLON are the maximum deviation of the data set from the mean. If VARLAT and VARLON are null then the data in LAT and LON have been take from logs or reports.

Obviously, the average of the ship's positions are not used for moorings. If VARLAT and VARLON are set then the information has been derived from the difference of the recorded positions on deployment and recovery.

The BODC event number (BEN) is a concept introduced to overcome the problem that it is impossible to guarantee that the identifiers assigned during the cruise will be unique within database incorporating many cruises. It is a very important field because it is used within the database as a 'primary key' which by definition must be unique. Data elsewhere in the database, resulting from a specified event, will either be labelled directly, or via a linkage record to its BEN.

OID, the originator's identifier, is the label that was assigned to the event during the cruise. For example, for Discovery cruises, it is based on the 'Discovery number' such as 11869#1. In a few cases, usually non-toxic samples or XBT drops, no identifier was assigned during the cruise and suitable naming schemes have been devised by BODC.

Event start and end times have been specified to bracket the event. Thus, for a CTD cast, the time span is from the instrument leaving the deck until its return. Some events are regarded as instantaneous, for example non-toxic samples. In these cases, the end times are set null. Wherever possible, cores are regarded as instantaneous events at the time when the corer reached the bottom.

The gear codes are mnemonics used to describe the data collection activity or the equipment used. The codes have been chosen to convey as much meaning as possible, but a plain language description of each code is provided in table G CODE.

The cruise identifiers are made up from a ship code concatenated with the cruise identifier. For example, 'DI' is used for Discovery and 'CD' for Charles Darwin and a typical cruise would be labelled DI182 or CD46.

# **Table EVENT\_COMM**

## **Field Definitions**

BEN NUMBER(6) The BODC event number.
COMM CHAR(100) Plain language comment field.

## Notes

This table provides a mechanism for labelling EVENT records without encumbering EVENT listings with a large text field.

## **Table FORAMS**

#### **Field Definitions**

| NUMBER(6)   | BODC core reference number.                                                 |
|-------------|-----------------------------------------------------------------------------|
| NUMBER(4,2) | Distance from top of core to the middle of the slab (cm).                   |
| NUMBER(3,2) | Slab thickness (cm).                                                        |
| NUMBER(3)   | Data originator identification code.                                        |
| CHAR(1)     | Specimen condition indicator.                                               |
| CHAR(15)    | Foraminifera type.                                                          |
| CHAR(30)    | Taxon.                                                                      |
| NUMBER(3)   | Number of specimens in the sample.                                          |
| NUMBER(5,2) | Dry weight of the sediment sample (g).                                      |
|             | NUMBER(4,2)  NUMBER(3,2)  NUMBER(3)  CHAR(1)  CHAR(15)  CHAR(30)  NUMBER(3) |

#### **Notes**

The originator's reference field allows the suppliers of individual data values to be identified. The objective when allocating these linkages is to provide a point of contact for users of the data to approach when initiating collaboration that will endure beyond the end of a project. Consequently, linkages have been assigned at the PI level and do not necessarily specify the individual who actually did the analysis. Should anyone object to the codes that have been assigned, please let us know and we will modify them accordingly.

The specimen condition indicator is set to 'L' for live specimens and 'D' for dead ones.

# Table G\_CODE

# **Field Definitions**

| GCODE | CHAR(8)  | Standardised gear code.                                    |
|-------|----------|------------------------------------------------------------|
| DESCR | CHAR(60) | Plain language description of the gear described by GCODE. |

## **Table INTBOT**

#### **Field Definitions**

| BEN              | NUMBER(6)                | BODC event number for the integrated station.                                 |
|------------------|--------------------------|-------------------------------------------------------------------------------|
| FLCHL5           | NUMBER(3,1)              | Integrated chlorophyll in the $>5$ micron size fraction (mg/m <sup>2</sup> ). |
| FLCHL2           | NUMBER(3,1)              | Integrated chlorophyll in the 2-5 micron size fraction (mg/m²).               |
| FLCHL02          | NUMBER(3,1)              | Integrated chlorophyll in the 0.2-2 micron size fraction (mg/m²).             |
| DEPINT<br>IORGRF | NUMBER(4,1)<br>NUMBER(3) | Depth to which the data were integrated (m). Originator identification code.  |

#### **Notes**

The originator's reference field allows the suppliers of individual data values to be identified. The objective when allocating these linkages is to provide a point of contact for users of the data to approach when initiating collaboration that will endure beyond the end of a project. Consequently, linkages have been assigned at the PI level and do not necessarily specify the individual who actually did the analysis. If anyone has any objections to the assignments, please let us know and we will make the appropriate corrections.

Integrated data are only stored when they are supplied as part of a data set. They are not routinely computed by BODC.

## **Table LHPR**

### **Field Definitions**

| FISH NUMBER(4) Fish larvae (number per volume filtered).  JELLY NUMBER(4) LCOPE NUMBER(4) Delies (number per volume filtered).  Large Copepoda (number per volume filtered).  Large Copepoda (number per volume filtered).  MED NUMBER(4) Medusozoa (number per volume filtered).  OPHI NUMBER(4) Ophiuroidea (number per volume filtered).  OSTRA NUMBER(4) Polychaeta (number per volume filtered).  POLY NUMBER(4) Polychaeta (number per volume filtered).  SIPHO NUMBER(4) Siphonophora (number per volume filtered).  Siphonophora (number per volume filtered). | tered). ). d). c |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| FORA NUMBER(4) Foraminifera (number per volume filtere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d).              |

#### **Notes**

A unique INET value is assigned to each LHPR sample so one tow will have a number of records, in both the NETINDX and LHPR tables.

Note that volume filtered is the VFILT column in the NETINDX table. The number of each group normalised per 1 m³ can be easily worked out by dividing the value in LHPR by the VFILT value in NETINDX for the same INET.

# **Table MEGADAT**

## **Field Definitions**

| BEN   | NUMBER(6) | BODC event number of the epibenthic trawl.               |
|-------|-----------|----------------------------------------------------------|
| GROOP | CHAR(15)  | Taxonomic group.                                         |
| KOUNT | NUMBER(4) | Taxonomic group abundance (number/1000 m <sup>2</sup> ). |
| BIOM  | NUMBER(4) | Taxonomic group biomass (g wet weight/1000               |
|       |           | $m^2$ ).                                                 |

### **Notes**

The individual taxonomic groups included are the principal megafaunal groups. Consequently, the total values given exceed the sums of the individual taxonomic groups.

# **Table MEGAHEAD**

# **Field Definitions**

| BEN<br>SPECBIOM | NUMBER(6)<br>NUMBER(3,1) | BODC event number of the epibenthic trawl. Biomass of characteristic taxa (mg C/m²) |
|-----------------|--------------------------|-------------------------------------------------------------------------------------|
| OTHERBIOM       | NUMBER(3,1)              | Biomass of non-characteristic taxa (mg C/m²).                                       |
| AVGWW           | NUMBER(4,1)              | Average individual specimen wet weight (g).                                         |
| CARNBIOM        | NUMBER(3,1)              | Proportion of carnivores in the catch by biomass (%).                               |
| FFBIOM          | NUMBER(3,1)              | Proportion of filter feeders in the catch by biomass (%).                           |
| DFBIOM          | NUMBER(3,1)              | Proportion of detritus feeders in the catch by biomass (%).                         |
| CARNDENS        | NUMBER(3,1)              | Proportion of carnivores in the catch by abundance (%).                             |
| FFDENS          | NUMBER(3,1)              | Proportion of filter feeders in the catch by abundance (%).                         |
| DFDENS          | NUMBER(3,1)              | Proportion of detritus feeders in the catch by abundance (%).                       |

## **Notes**

The characteristic taxa are the principal megafaunal groups that have been quantified in table MEGADAT.

## **Table MEIODAT**

#### **Field Definitions**

| NUMBER(6)   | BODC sample reference.                     |
|-------------|--------------------------------------------|
| CHAR(16)    | Taxonomic group.                           |
| CHAR(25)    | Specific taxon.                            |
| NUMBER(7,4) | Specific taxon dry weight biomass (mg/m²). |
| NUMBER(6)   | Specific taxon abundance (number/m²).      |
|             | CHAR(16)<br>CHAR(25)<br>NUMBER(7,4)        |

#### **Notes**

The usage of the fields GROOP and TAXA requires some explanation.

If the GROOP field is set to 'Total' and the TAXA field is null, then the record holds the total meiofaunal abundance for the segment to which it is linked. If the GROOP field is defined and the TAXA field is set to 'Total' then the record holds the total abundance and biomass of that taxonomic group for the core segment to which it is linked.

If TAXA is not null and not set to 'Total', then the record contains the abundance of the specified taxon (differentiated at the genus level). This level of detail is only provided for nematodes.

# **Table MEIOHDR**

# **Field Definitions**

| ICORE   | NUMBER(6)   | BODC core reference number.                        |
|---------|-------------|----------------------------------------------------|
| ISAMP   | NUMBER(6)   | BODC sample reference.                             |
| COREDEP | NUMBER(6,3) | Distance from the top of the core to the mid-point |
|         |             | of the sample (cm).                                |
| SEGLEN  | NUMBER(6.3) | Thickness of the sample (cm).                      |

# **Table MFDAT**

# **Field Definitions**

| ISAMP | NUMBER(6)   | Core sample reference.                  |
|-------|-------------|-----------------------------------------|
| GROOP | CHAR(16)    | Taxonomic group name.                   |
| TAXA  | CHAR(16)    | Taxon name.                             |
| BIOM  | NUMBER(7,4) | Biomass (g/m² wet weight).              |
| KOUNT | NUMBER(5,1) | Abundance (number per m <sup>2</sup> ). |

## **Notes**

Data were either provided at the group or taxon level. Where the data were supplied at group level, the TAXA field is set to 'Undifferentiated'.

## **Table MFHEAD**

### **Field Definitions**

| ICORE   | NUMBER(6)   | BODC core reference.                              |
|---------|-------------|---------------------------------------------------|
| ISAMP   | NUMBER(6)   | Core sample reference (a link to MFDAT).          |
| COREDEP | NUMBER(4,1) | Distance along core to mid-point of segment (cm). |
| SEGLEN  | NUMBER(3,1) | Core segment length (cm).                         |
| MF      | NUMBER(4)   | Total macrofauna abundance (number per m²).       |
| IORGRF  | NUMBER(6)   | Originator identification reference.              |
| DIVPOLY | NUMBER(2)   | Number of polychaete taxa in the sample.          |
| DIVALL  | NUMBER(2)   | Total number of taxa in the sample.               |

#### **Notes**

The originator's reference field allows the suppliers of individual data values to be identified. The objective when allocating these linkages is to provide a point of contact for users of the data to approach when initiating collaboration that will endure beyond the end of a project. Consequently, linkages have been assigned at the PI level and do not necessarily specify the individual who actually did the analysis.

.

# **Table MOORINDX**

# **Field Definitions**

| BEN         | NUMBER(6)   | BODC event number for the mooring                        |
|-------------|-------------|----------------------------------------------------------|
| ISHREF      | NUMBER(6)   | BODC NODB identifier for the data series.                |
| METER_TYPE  | CHAR(50)    | Description of the instrument measuring the data series. |
| DADAM CODEC | CHAD(0)     |                                                          |
| PARAM_CODES | CHAR(8)     | Parameters included in the data series.                  |
| MINDEP      | NUMBER(9,2) | Minimum depth sampled (m).                               |
| MAXDEP      | NUMBER(9,2) | Maximum depth sampled (m).                               |

# **Table MOOR\_PARAMS**

# **Field Definitions**

CHAR(8) CHAR(50) PARAM Parameter code.

DESCR Parameter description.

# **Table MSP**

# **Field Definitions**

| BEN<br>REF<br>FRAME<br>DATIM<br>PRESS | NUMBER(6)<br>VARCHAR2(6)<br>NUMBER(3)<br>DATE<br>NUMBER(5,1) | BODC event number. Originator's reference for the MSP deployment. Frame number on film. Date/time when the frame was exposed. Depth of the instrument below the surface when the frame was exposed expressed in decibars for CTD compatibility. |
|---------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TPA                                   | NUMBER(6,3)                                                  | Total abundance (per I). Total of NS1-NS6 (i.e. excludes very large particles).                                                                                                                                                                 |
| TPV                                   | NUMBER(6,3)                                                  | Total particulate volume (ppm). Total of VS1-VS6 (i.e. excludes very large particles).                                                                                                                                                          |
| NS1                                   | NUMBER(6,3)                                                  | Abundance of particles of equivalent spherical diameter of 0.6-0.98 mm (per l).                                                                                                                                                                 |
| VS1                                   | NUMBER(6,3)                                                  | Volume of particles of equivalent spherical diameter of 0.6-0.98 mm (ppm).                                                                                                                                                                      |
| NS2                                   | NUMBER(6,3)                                                  | Abundance of particles of equivalent spherical diameter of 0.98-1.56 mm (per I).                                                                                                                                                                |
| VS2                                   | NUMBER(6,3)                                                  | Volume of particles of equivalent spherical diameter of 0.98-1.56 mm (ppm).                                                                                                                                                                     |
| NS3                                   | NUMBER(6,3)                                                  | Abundance of particles of equivalent spherical diameter of 1.56-2.48 mm (per l).                                                                                                                                                                |
| VS3                                   | NUMBER(6,3)                                                  | Volume of particles of equivalent spherical diameter of 1.56-2.48 mm (ppm).                                                                                                                                                                     |
| NS4                                   | NUMBER(6,3)                                                  | Abundance of particles of equivalent spherical diameter of 2.48-3.94 mm (per l).                                                                                                                                                                |
| VS4                                   | NUMBER(6,3)                                                  | Volume of particles of equivalent spherical diameter of 2.48-3.94 mm (ppm).                                                                                                                                                                     |
| NS5                                   | NUMBER(6,3)                                                  | Abundance of particles of equivalent spherical diameter of 3.94-6.25 mm (per I).                                                                                                                                                                |
| VS5                                   | NUMBER(6,3)                                                  | Volume of particles of equivalent spherical                                                                                                                                                                                                     |
| NS6                                   | NUMBER(6,3)                                                  | diameter of 3.94-6.25 mm (ppm).  Abundance of particles of equivalent spherical                                                                                                                                                                 |
| VS6                                   | NUMBER(6,3)                                                  | diameter of 6.25-9.93 mm (per I).  Volume of particles of equivalent spherical                                                                                                                                                                  |
| NS7                                   | NUMBER(6,3)                                                  | diameter of 6.25-9.93 mm (ppm).  Abundance of particles of equivalent spherical                                                                                                                                                                 |
| VS7                                   | NUMBER(7,3)                                                  | diameter of >9.93 mm (per I). Volume of particles of equivalent spherical diameter of >9.93 mm (ppm).                                                                                                                                           |

## **Notes**

The fields DATIM and PRESS provide alternative independent variable channels for mooring and CTD deployments of the marine snow profiler allowing both types of deployments to reside in a single table.

# **Table MTALDAT**

## **Field Definitions**

| EXPREF | CHAR(8)     | BODC experiment reference.       |
|--------|-------------|----------------------------------|
| TIME   | NUMBER(4,1) | Elapsed time (hours).            |
| CD     | NUMBER(5,2) | Cadmium relative uptake (ppt).   |
| MN     | NUMBER(5,2) | Manganese relative uptake (ppt). |
| ZN     | NUMBER(5,2) | Zinc relative uptake (ppt).      |
| CO     | NUMBER(5,2) | Cobalt relative uptake (ppt).    |
|        |             |                                  |

### **Notes**

The elapsed time is from the start of the experiment. Experimental conditions are stored in MTALHDR. Please note that without these the data in MTALDAT are meaningless.

# **Table MTALHDR**

# **Field Definitions**

| EXPREF | CHAR(8)   | BODC experiment reference. |
|--------|-----------|----------------------------|
| IBTTLE | NUMBER(6) | BODC sample reference      |

Plain language description of the experimental conditions. CHAR(100) COMM

### **Table N15DAT**

#### **Field Definitions**

| EXPREF | CHAR(6)     | BODC experiment reference.                                                        |
|--------|-------------|-----------------------------------------------------------------------------------|
| IBTTLE | NUMBER(6)   | BODC bottle reference number.                                                     |
| DEPTH  | NUMBER(4,1) | Depth (or depth equivalent) at which sample was incubated.                        |
| LIGHT  | NUMBER(4,1) | Fraction of available light illuminating the sample (%).                          |
| TNO3   | NUMBER(6,4) | Total <sup>15</sup> NO <sub>3</sub> uptake (μM/day).                              |
| STNO3  | NUMBER(6,4) | Standard deviation of TNO3 (µM/day).                                              |
| TNH4   | NUMBER(6,4) | Total <sup>15</sup> NH4 uptake (μM/day).                                          |
| STNH4  | NUMBER(6,4) | Standard deviation of TNH4 (μM/day).                                              |
| TSNO3  | NUMBER(6,4) | $^{15}$ NO3 uptake in nanoplankton fraction ( $\mu$ M/day).                       |
| TLNO3  | NUMBER(6,4) | $^{15}\text{NO}_3$ uptake in microplankton fraction ( $\mu\text{M}/\text{day}$ ). |
| TSNH4  | NUMBER(6,4) | <sup>15</sup> NH4 uptake in nanoplankton (μM/day).                                |
| TLNH4  | NUMBER(6,4) | <sup>15</sup> NH4 uptake in microplankton (μM/day).                               |

#### **Notes**

The experiment reference provides a linkage between the metadata held in table N15HDR and the individual uptake measurements held in N15DAT. The source (position and depth) of the incubated water may be identified through IBTTLE. Note that IBTTLE will not be unique for every record in cases where a common water sample was incubated at several depths.

The fields DEPTH and LIGHT are provided as alternative indicators of the conditions under which the sample was incubated. For in-situ incubations, LIGHT will generally be null and DEPTH represents the actual depth of incubation. For ondeck experiments, LIGHT represents the percentage of ambient light reaching the sample: i.e. the light transmission of the incubation screen. DEPTH is computed from this using either CTD downwelling irradiance or beam attenuance data.

The definitions of micro, nano and picoplankton vary from time to time depending on the filters used in the experiment. The definitions for a given experiment are given in the N15HDR record.

The fields TNO<sub>3</sub>, and TNH<sub>4</sub> are either the result of a non size-fractionated experiment or the summation of size fraction data. As a general rule, if the size

fraction columns are non-null then the total uptake values have been computed and not individually measured.

Note that the units are quoted in terms of uptake **per day**. This is a loose definition. Strictly speaking, the uptake is quoted over the period of the incubation duration. Normally this is approximately 24 hours but users are advised to check the duration in the appropriate field of N15HDR.

## **Table N15HDR**

#### **Field Definitions**

| EXPREF<br>TYPE | CHAR(6)<br>CHAR(2) | BODC experiment reference.  Experiment type code. (OD for on deck experiments, IS for in-situ experiments) |
|----------------|--------------------|------------------------------------------------------------------------------------------------------------|
| BENCOL         | NUMBER(6)          | BODC event number of the water collection event.                                                           |
| BEN            | NUMBER(6)          | BODC event number assigned to the incubation                                                               |
| SDATE          | DATE               | Date and time of the start of the incubation.                                                              |
| INCDUR         | NUMBER(3,1)        | Incubation duration (hours).                                                                               |
| COMM           | CHAR(30)           | Plain language comment field.                                                                              |
| DEPINT         | NUMBER(4,1)        | Depth over which the integrated production was calculated.                                                 |
| INTNO3         | NUMBER(5,2)        | Integrated <sup>15</sup> NO3 uptake (mmol/m <sup>2</sup> /day).                                            |
| INTNH4         | NUMBER(5,2)        | Integrated <sup>15</sup> NH4 uptake (mmol/m <sup>2</sup> /day).                                            |
| MICDEF         | CHAR(8)            | Microplankton definition.                                                                                  |
| NANDEF         | CHAR(8)            | Nanoplankton definition.                                                                                   |
| PICDEF         | CHAR(8)            | Picoplankton definition.                                                                                   |

#### **Notes**

Fields BENCOL and BEN require some explanation as the presence of two BODC event numbers in a single table may at first sight seem confusing. BENCOL specifies where the water used in the production experiment came from. In some ways it is superfluous because the same information may be derived from the IBTTLE field in N15DAT. However, it is included to simplify the task of linking integrated production data held in table N15HDR to the place and time to which they relate.

BEN is a reference given to some production experiments. This invariably relates to in-situ experiments where a rig has been cast adrift from the ship. On-deck incubations have never been considered as events. The reason for this is more historical than logical: the event entries are drawn up from ship's logs and whilst a rig being deployed has often (but not always) merited a log entry, the placing of samples in an on-deck incubator has not.

Integrated production data are only included if they were computed and supplied by the data originator. They are not routinely determined by BODC.

## **Table NEPH**

#### **Field Definitions**

BEN NUMBER(6) BODC event number.

PRESS NUMBER(5,1) Pressure (db).

AQNPH NUMBER(6,4) Nephelometer turbidity (arbitrary units).

#### **Notes**

This table has been included to overcome a limitation in the structures used for handling CTD data that assume a fixed parameter set. A more flexible structure is planned and once that is implemented, this table will be withdrawn.

The data have been averaged into bins using the same method as the other CTD parameters. Joining table NEPH with BINCTD should therefore be straightforward.

# **Table NETINDX**

### **Field Definitions**

| BEN     | NUMBER(6)    | BODC event number.                                                                     |
|---------|--------------|----------------------------------------------------------------------------------------|
| INET    | NUMBER(6)    | Unique identifier assigned to the net catch.                                           |
| MINDEP  | NUMBER(5,1)  | Minimum depth associated with net haul.                                                |
| MAXDEP  | NUMBER(5,1)  | Maximum depth associated with the net haul.                                            |
| GCODE   | CHAR(8)      | Net type description using the conventions defined in table G_CODE.                    |
| HTYPE   | CHAR(1)      | Haul type. Set to 'V' for vertical, 'O' for oblique or stepped and 'H' for horizontal. |
| FLOW    | NUMBER(5,1)  | Flow meter reading.                                                                    |
| MESH    | NUMBER(4)    | Net mesh size (μm).                                                                    |
| AREA    | NUMBER(5,2)  | Area of the net mouth (m <sup>2</sup> ).                                               |
| EFF     | NUMBER(3)    | Filtering efficiency.                                                                  |
| TOWLEN  | NUMBER(5)    | Length of tow (m).                                                                     |
| VFILT   | NUMBER(11,6) | Volume swept by the net (m <sup>3</sup> ).                                             |
| SPEED   | NUMBER(3,1)  | Approximate speed of tow (knots).                                                      |
| FLDN    | CHAR(1)      | Day and night discriminator. Set to 'D' for day, 'N'                                   |
|         |              | for night or 'C' for crepuscular.                                                      |
| VOLSMPD | NUMBER(7,2)  | Catch volume integrated over the length of the                                         |
|         |              | tow, i.e. volume of sample in cod end (ml).                                            |
| NORVOL  | NUMBER(11,6) | Normalised displacement volume (ml/1000 m <sup>3</sup> ).                              |
| INTBIO  | NUMBER(7,3)  | Depth-integrated biomass (mg C/m²).                                                    |
| TEMP    | NUMBER(4,2)  | In-situ temperature (°C).                                                              |
| SAL     | NUMBER(4,2)  | Salinity (PSU).                                                                        |
| COMM    | CHAR(40)     | Plain language comment field for qualifying information.                               |

### **Notes**

The two depth fields MINDEP and MAXDEP are provided to allow for both horizontal tows and vertical or oblique net hauls. In the former case both fields will be set to the same value.

# **Table ORGCODE**

# **Field Definitions**

| IORGRF | NUMBER(6) | Originator's reference code. |
|--------|-----------|------------------------------|
| CORGNM | CHAR(20)  | Originator's name.           |
| CORGO  | CHAR(40)  | Originator's organisation.   |

# **Table P33DARK**

## **Field Definitions**

| EXPREF | CHAR(6)     | BODC experiment reference.                                     |
|--------|-------------|----------------------------------------------------------------|
| IBTTLE | NUMBER(6)   | BODC bottle reference number.                                  |
| DEPTH  | NUMBER(3,1) | Depth (or depth equivalent) at which the sample was incubated. |
| UPMIC  | NUMBER(6,3) | Microplankton uptake (nM P/day).                               |
| UPNAN  | NUMBER(6,3) | Nanoplankton uptake (M P/day).                                 |
| UPPIC  | NUMBER(6,3) | Picoplankton uptake (nM P/day).                                |
| UPTOT  | NUMBER(6,3) | Total uptake (nM P/day)                                        |
| SUPMIC | NUMBER(5,3) | Standard deviation of microplankton uptake (nM P/day).         |
| SUPNAN | NUMBER(5,3) | Standard deviation of nanoplankton uptake (nM P/day).          |
| SUPPIC | NUMBER(5,3) | Standard deviation of picoplankton uptake (nM P/day).          |

### **Notes**

This table contains the results from the control bottles, incubated in total darkness. Note that this table contains data from both <sup>32</sup>P and <sup>33</sup>P labelled experiments as indicated in the header field TRACER.

## **Table P33DAT**

#### **Field Definitions**

| EXPREF | CHAR(6)     | BODC experiment reference.                                     |
|--------|-------------|----------------------------------------------------------------|
| IBTTLE | NUMBER(6)   | BODC bottle reference number.                                  |
| DEPTH  | NUMBER(3,1) | Depth (or depth equivalent) at which the sample was incubated. |
| LIGHT  | NUMBER(4,1) | Fraction of available light illuminating the sample (%).       |
| FLIGHT | NUMBER(5,1) | Light level in a PvI profile (μE/m²/s)                         |
| UPMIC  | NUMBER(6,3) | Microplankton uptake (nM P/incubation duration).               |
| UPNAN  | NUMBER(6,3) | Nanoplankton uptake (nM P/incubation duration).                |
| UPPIC  | NUMBER(6,3) | Picoplankton uptake (nM P/incubation duration).                |
| UPTOT  | NUMBER(6,3) | Total uptake (nM P/incubation duration).                       |
| SUPMIC | NUMBER(5,3) | Standard deviation of microplankton uptake (nM P/day).         |
| SUPNAN | NUMBER(5,3) | Standard deviation of nanoplankton uptake (nM P/day).          |
| SUPPIC | NUMBER(5,3) | Standard deviation of picoplankton uptake (nM P/day).          |
| SUPTOT | NUMBER(6,3) | Standard deviation of the total uptake (nM P/day).             |

#### **Notes**

The experiment reference provides a linkage between the metadata held in table P33HDR and the individual uptake measurements held in P33DAT. The source (position and depth) of the incubated water may be identified through IBTTLE. Note that IBTTLE will not be unique for every record in cases where a common water sample was incubated at several depths.

The fields DEPTH and LIGHT are provided as alternative indicators of the conditions under which the sample was incubated. For in-situ incubations, LIGHT will generally be null and DEPTH represents the actual depth of incubation. For ondeck experiments, LIGHT represents the percentage of ambient light reaching the sample: i.e. the light transmission of the incubation screen. DEPTH is computed from this using either CTD downwelling irradiance or beam attenuance data.

The definitions of micro, nano and picoplankton vary from time to time depending on the filters used in the experiment. The definitions for a given experiment are given in the P33HDR record.

The UPTOT field is either the result of a non size-fractionated experiment or the summation of size fraction data. If the size fractions have been summed the

standard deviation for the total field has been set to the square root of the sum of the squares of the size fraction standard deviations. As a general rule, if the size fraction columns are non-null then the total uptake values have been computed and not individually measured.

**NB** The units of uptake are per incubation duration as specified in the INCDUR field of table P33HDR. For in-situ and on-deck incubations this will normally, **but not always**, be 24 hours. In the case of light gradient incubations, where the light intensity is constant throughout the incubation, it is usual for the uptake rate to be quoted per hour. In these cases, the incubation duration has been set to 1 event though it is probable that the samples were actually incubated for longer than this.

## **Table P33HDR**

#### **Field Definitions**

| EXPREF<br>TYPE | CHAR(6)<br>CHAR(2) | BODC experiment reference code.<br>Experiment type code. (OD for on deck incubations, IS for in-situ experiments and PI is for uptake versus light profiles obtained in a PvI incubator). |
|----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BENCOL         | NUMBER(6)          | BODC event number for the water collection event.                                                                                                                                         |
| BEN            | NUMBER(6)          | BODC event number (where assigned) for the incubation.                                                                                                                                    |
| SDATE          | DATE               | Date and time of the start of the incubation.                                                                                                                                             |
| INCDUR         | NUMBER(3,1)        | Incubation duration (hours).                                                                                                                                                              |
| COMM           | CHAR(20)           | Plain language comment field.                                                                                                                                                             |
| DEPINT         | NUMBER(4,1)        | Depth to which productivity has been integrated.                                                                                                                                          |
| INTMIC         | NUMBER(6,2)        | Integrated uptake for the microplankton fraction (µmol P/m²/day).                                                                                                                         |
| INTNAN         | NUMBER(6,2)        | Integrated uptake for the nanoplankton fraction (µmol P/m²/day).                                                                                                                          |
| INTPIC         | NUMBER(6,2)        | Integrated uptake for the picoplankton fraction (µmol P/m²/day).                                                                                                                          |
| INTTOT         | NUMBER(6,2)        | Total integrated uptake (µmol P/m²/day).                                                                                                                                                  |
| MICDEF         | CHAR(8)            | Microplankton definition.                                                                                                                                                                 |
| NANDEF         | CHAR(8)            | Nanoplankton definition.                                                                                                                                                                  |
| PICDEF         | CHAR(8)            | Picoplankton definition.                                                                                                                                                                  |
| TRACER         | CHAR(3)            | Tracer used (32P or 33P)                                                                                                                                                                  |
|                | * *                | •                                                                                                                                                                                         |

#### **Notes**

Fields BENCOL and BEN require some explanation as the presence of two BODC event numbers in a single table may at first sight seem confusing. BENCOL specifies where the water used in the production experiment came from. In some ways it is superfluous because the same information may be derived from the IBTTLE field in P33DAT. However, it is included to simplify the task of linking integrated production data held in table P33HDR to the place and time to which they relate.

BEN is a reference given to some production experiments. This invariably relates to in-situ experiments where a rig has been cast adrift from the ship. On-deck incubations have never been considered as events. The reason for this is more historical than logical: the event entries are drawn up from ship's logs and whilst a

rig being deployed has often (but not always) merited a log entry, the placing of samples in an on-deck incubator has not.

Integrated production data are only included if they were computed and supplied by the data originator. They are not routinely determined by BODC.

# **Table PRINDX**

# **Field Definitions**

| BEN           | NUMBER(6)   | BODC event number.                                  |
|---------------|-------------|-----------------------------------------------------|
| IPROF         | NUMBER(6)   | BODC profile identifier.                            |
| <b>TBEGNS</b> | DATE        | Start time of the profile.                          |
| MAXDPTH       | NUMBER(4,1) | Maximum depth reached (m).                          |
| SAMPINT       | NUMBER(3,1) | Sampling interval of an instrument (s).             |
| UD            | CHAR(1)     | Discriminator for upwelling/downwelling.            |
| RI            | CHAR(1)     | Discriminator for radiance (flat sensor)/irradiance |
|               |             | (hemispherical).                                    |
| WLMIN         | NUMBER(4,1) | Minimum recording wavelength (nm).                  |
| WLMAX         | NUMBER(4,1) | Maximum recording wavelength (nm).                  |

### **Table PRPROF**

#### **Field Definitions**

| IPROF | NUMBER(6)   | BODC profile identifier. |
|-------|-------------|--------------------------|
| CYCLE | NUMBER(4)   | Profile cycle number.    |
| DEPTH | NUMBER(6,3) | Depth (m).               |

NUMBER(6,3) Radiation intensity (W/m2) RAD

#### **Notes**

IPROF is included to allow for the case of several radiometers being attached to a single frame and lowered as one cast.

The CYCLE field just lists the cycle number of the particular profile in consecutive numbers starting from number one. Note that this relates to a sampling interval which is stored in PRINDX table.

## **Table RMT**

### **Field Definitions**

| INET | NUMBER(6) | BODC net reference number. |
|------|-----------|----------------------------|
|------|-----------|----------------------------|

TAXA CHAR(15)

Taxon description.

Normalised catch volume (ml/1000 m³).

Integrated biomass (mg C/m²). NUMBER(7,3) NORVOL

NUMBER(7,3) INTBIO

### **Notes**

INTBIO contains depth integrated values determined by the data originator.

### **Table SSINDX**

#### **Field Definitions**

| BEN    | NUMBER(6)   | BODC event number.                           |
|--------|-------------|----------------------------------------------|
| BMPNTR | NUMBER(5)   | Binary merge file pointer.                   |
| MINP   | NUMBER(4,1) | Minimum pressure stored in the profile (db). |
| MAXP   | NUMBER(4,1) | Maximum pressure stored in the profile (db). |

#### **Notes**

The pressure range of the stored profile is given to enable cases where the water column coverage is restricted to be readily identified. The depth to which the fish was flying may also be readily ascertained.

The binary merge file pointer is the index of the record in the underway data file which is contemporaneous with the SeaSoar pseudo-CTD. This field can be used, together with the CRUISE field from the EVENT table, to forge linkages between the SeaSoar data set and the underway data set.

### **Table STINDX**

#### **Field Definitions**

| BEN     | NUMBER(6)   | BOFS event number.                        |
|---------|-------------|-------------------------------------------|
| ISAMP   | NUMBER(6)   | BODC sediment trap sample reference.      |
| SAMP    | CHAR(17)    | Originator's sample reference.            |
| DEPTH   | NUMBER(5)   | Depth below surface of sediment trap (m). |
| SDATE   | DATE        | Date of start of sample collection.       |
| EDATE   | DATE        | Date of end of sample collection.         |
| SAMPINT | NUMBER(6,3) | Sample collection time (days).            |

#### **Notes**

The SAMPINT field is included to allow for the trap being recovered for maintenance and then re-deployed without the removal of the current sample. Under normal circumstances, SAMPINT will be equal to the difference between SDATE and EDATE. If SAMPINT is null, then this difference may be used instead.

#### **Table TRAPDATA**

#### **Field Definitions**

| ISAMP  | NUMBER(6) | BODC trap sample identifier.    |
|--------|-----------|---------------------------------|
| CPCODE | CHAR(8)   | Parameter code.                 |
| FPVAL  | NUMBER    | Parameter value.                |
| CPFLAG | CHAR(1)   | Parameter quality control flag. |
| IORGRF | NUMBER(6) | Originator's reference.         |
| IDOCRF | NUMBER(8) | Document reference.             |
| CILOAD | CHAR(6)   | Record creation date (yymmdd).  |
| TSGMOD | DATE      | Last modification time stamp.   |
|        |           |                                 |

#### **Notes**

The primary key is formed from the three fields, ISAMP, CPCODE and IORGRF. In other words, the table contains one row for each parameter measurement on each trap sample by a given data originator.

The parameter code consists of 8 bytes which describes the parameter measured in some detail. The parameter code definitions are stored in the parameter dictionary (see the table names starting with 'Z').

The parameter flag field serves two purposes. First, it identifies parameter values identified as problems during quality control procedures. Different codes are used to differentiate between originator, BODC and user quality control. Secondly, it is used to identify samples where the measured parameter was either below detection limit or saturated the measuring apparatus. In these cases the data values are set to the detection limit or the saturation value respectively. If no flag value has been assigned (signifying good data), the CPFLAG field is blank.

The flag values which may be encountered are:

- K Uncertain/suspect value (source of quality control unknown).
- L Uncertain/suspect value (data originator's quality control).
- M Uncertain/suspect value (BODC quality control).
- O Uncertain/suspect value (user quality control)
- < Below detection limit.
- > In excess of stated value.

The originator's reference field allows the suppliers of individual data values to be identified. The objective when allocating these linkages is to provide a point of contact for users of the data to approach when initiating collaboration that will

The 'T' flag is only found on records created for water bottle samples from CTD profile data. It means that no data were found at the bottle firing pressure. Instead, the nearest data value has been taken, providing this was within 2 db of the required pressure.

The originator's reference field allows the suppliers of individual data values to be identified. The objective when allocating these linkages is to provide a point of contact for users of the data to approach when initiating collaboration that will endure beyond the end of a project. Consequently, linkages have been assigned at the PI level and do not necessarily specify the individual who actually did the analysis.

The capability to link data to its originator only came about when the normalised structure was implemented. Linkages have been retrospectively applied to the entire data holding during restructuring which was done using cruise reports and the collective memories of BODC staff and participating scientists. If we've got anything wrong, please don't bear a grudge: just let us know and we'll fix it. Likewise, anyone who feels aggrieved for any reason about these code allocations should discuss it with us so that any problems may be quickly rectified.

Codes are used to eliminate potential problems with misspellings and the like. The codes used are documented in the table ORGCODE.

Document references have not yet been implemented so the IDOCRF field is currently always null.

### **Table XBT**

### **Field Definitions**

| BEN    | NUMBER(6)   | BODC event number.                         |
|--------|-------------|--------------------------------------------|
| IELTIM | NUMBER(5)   | Elapsed time (s) from the start of the XBT |
|        |             | deployment (TBEGNS in table EVENT).        |
| DEPTH  | NUMBER(5,1) | Depth (m).                                 |
| FDEPTH | CHAR(1)     | Depth quality control flag.                |
| TEMP   | NUMBER(4,2) | Temperature (°C).                          |
| FTEMP  | CHAR (1)    | Temperature quality control flag.          |

### **Notes**

The flag conventions used are blank for good data and 'M' for data values identified as suspect by BODC quality control procedures.

## **Table XBTINDX**

## **Field Definitions**

BEN NUMBER(6) PROBE\_TYPE CHAR(2) BODC event number

XBT probe type (T5 or T7).

### **Table ZUCT**

#### **Field Definitions**

| CCTREF | CHAR(4)  | Category code.                          |
|--------|----------|-----------------------------------------|
| CCTFUL | CHAR(40) | Category description in plain language. |
| CILOAD | CHAR(6)  | Date of record creation (yymmdd).       |
| TCTMOD | DATE     | Record modification time stamp.         |

#### **Notes**

The category codes are designed to group parameters into logical subgroups according to general operational practices. However, there will inevitably be parameters that could be fitted into more than one category depending upon one's point of view. This should be borne in mind when searching the dictionary. Always check out all possible categories.

## **Table ZUNT**

## **Field Definitions**

| CPUREF | CHAR(4)  | Unit code.                        |
|--------|----------|-----------------------------------|
| CPUABB | CHAR(10) | Abbreviated unit description.     |
| CPUFUL | CHAR(40) | Full unit description.            |
| CILOAD | CHAR(6)  | Date record was created (yymmdd). |
| TPUMOD | DATE     | Last modification time stamp.     |

### **Table ZUPM**

#### **Field Definitions**

| CPMCAT | CHAR(4)  | Category code.                      |
|--------|----------|-------------------------------------|
| CPMREF | CHAR(4)  | 4-byte code for the parameter name. |
| CPMABB | CHAR(20) | Abbreviated parameter name.         |
| CPMFUL | CHAR(80) | Full parameter name.                |
| CPMUNT | CHAR(4)  | Parameter storage unit code.        |
| FABSNT | NUMBER   | Absent data value.                  |
| FPMINM | NUMBER   | Minimum value for parameter.        |
| FPMAXM | NUMBER   | Maximum value for parameter.        |
| CINVER | CHAR(1)  | Plot inversion flag.                |
| CILOAD | CHAR(6)  | Date of record creation (yymmdd).   |
| TPMMOD | DATE     | Date and time of last modification. |
|        |          |                                     |

#### **Notes**

Most of the fields in this table are of more interest to BODC personnel than to database users. The exceptions are CPMCAT, CPMREF, CPMFUL and CPMUNT.

The category code (CPMCAT) provides the linkage to table ZUCT and hence identifies which generalised parameter descriptions belong to which category.

CPMFUL contains the parameter description in plain language and provides the hook by which users can recognise just what is meant by a particular code.

The field CPMUNT specifies the units in which the parameter is stored in the database. This is present as a code (to prevent problems arising from differing descriptions being given to the same unit e.g. degrees, deg. and the like) which may be translated using table ZUNT.

### **Table ZUSG**

#### **Field Definitions**

| CPMREF | CHAR(4)   | Parameter name code (bytes 1-4)            |
|--------|-----------|--------------------------------------------|
| CSGREF | CHAR(2)   | Parameter subgroup code (bytes 5-6).       |
| CDSREF | CHAR(2)   | Parameter discriminator code (bytes 7-8).  |
| CPMUSG | CHAR(8)   | Full 8-byte parameter code.                |
| IPMBEF | NUMBER(1) | Number of digits before the decimal point. |
| IPMAFT | NUMBER(1) | Number of digits after the decimal point.  |
| CSGABB | CHAR(20)  | Abbreviated parameter code description.    |
| CSGFUL | CHAR(100) | Full parameter code description.           |
| CSGMTH | CHAR(100) | Methodology description.                   |
| ISGREF | NUMBER(8) | Narrative document reference.              |
| CILOAD | CHAR(6)   | Date record was created (yymmdd).          |
| TSGMOD | DATE      | Record modification time stamp.            |
|        |           |                                            |

#### **Notes**

The complete parameter code (CPMUSG) is constructed by concatenation of the parameter name, parameter subgroup and parameter discriminator codes.

The fields IPMBEF and IPMAFT are included to allow software to format data sensibly. Note that the data covered by the parameter codes are stored to a precision of some 16 decimal places. IPMAFT indicates how many of these have significance.

The meaning of a given code is specified in plain language by the fields CSGFUL and CSGMTH. These fields are designed to give a user-friendly reference to the full parameter code. If they don't, please let us know. All the details which make the parameter unique (including filtration details where appropriate) are included.

The ISGREF field allows a linkage point for data documentation. It is designed to allow general methodology description documents to be linked to a parameter code. This on-line documentation is not currently implemented and the field is set null.

## **Database Linkage Definitions**

The tables in this section of the document show the linkages that exist between the database tables. The linkages chains run along the rows of the table and always start with table EVENT. The type of linkage is shown by bolding the text. A linkage from normal text to bold text is a 'one to many' relationship. Links from normal text to normal text or bold text to bold text are 'one to one' relationships.

#### **ADCP Data**

| <b>EVENT</b> | ADCPINDX | ADCP |
|--------------|----------|------|
| BEN          | BEN      | BEN  |

### **Drifting Buoy Data**

| EVENT | ARGOS |
|-------|-------|
| BEN   | BEN   |

#### **CTD Data**

| EVENT | CTDINDX | CTDCAL | CTDTYP | BINCTD |
|-------|---------|--------|--------|--------|
| BEN   | BEN     | BEN    |        | BEN    |
|       | TYPE    |        | TYPE   |        |

| EVENT | NEPH |
|-------|------|
| BEN   | BEN  |

#### **SeaSoar Data**

| EVENT | SSINDX | BINCTD |
|-------|--------|--------|
| BEN   | BEN    | BEN    |

## Water and Air Sample Data (Fully Normalised)

| <b>EVENT</b> | BOTTLE | BOTDATA | ZUSG   | ORGCODE |
|--------------|--------|---------|--------|---------|
| BEN          | BEN    |         |        |         |
|              | IBTTLE | IBTTLE  |        |         |
|              |        | IORGRF  |        | IORGRF  |
|              |        | CPCODE  | CPMUSG |         |

## Water and Air Sample Data (Simple Structures)

| EVENT | INTBOT |
|-------|--------|
| BEN   | BEN    |

## <sup>14</sup>C Production Data

| EVENT | BOTTLE | C14DAT | C14HDR |
|-------|--------|--------|--------|
| BEN   | BEN    |        |        |
|       | IBTTLE | IBTTLE |        |
|       |        | EXPREF | EXPREF |
| BEN   |        |        | BENCOL |

## **Benthic Profile Data (Fully Normalised)**

| EVENT | COREINDX | CORESAMP | COREPROF | ZUSG   | ORGCODE |
|-------|----------|----------|----------|--------|---------|
| BEN   | BEN      |          |          |        |         |
|       | ICORE    | ICORE    |          |        |         |
|       |          | ICSAMP   | ICSAMP   |        |         |
|       |          |          | IORGRF   |        | IORGRF  |
|       |          |          | CPCODE   | CPMUSG |         |

## **Benthic Whole Core Data (Fully Normalised)**

| EVENT | COREINDX | CORETOT | ZUSG   | ORGCODE |
|-------|----------|---------|--------|---------|
| BEN   | BEN      |         |        |         |
|       | ICORE    | ICORE   |        |         |
|       |          | IORGRF  |        | IORGRF  |
|       |          | CPCODE  | CPMUSG |         |

# **Benthic Data (Simple Structures)**

| EVENT | COREINDX | FORAMS |
|-------|----------|--------|
| BEN   | BEN      |        |
|       | ICORE    |        |
|       | ICORE    | ICORE  |
|       | ICORE    |        |
|       | ICORE    |        |
|       |          |        |

| EVENT | COREINDX | MEGAHEAD | MEGADAT |
|-------|----------|----------|---------|
| BEN   | BEN      |          |         |
|       | ICORE    |          |         |
| BEN   |          | BEN      | BEN     |

| EVENT | COREINDX | MEIOHDR | MEIODAT | MFHEAD | MFDAT |
|-------|----------|---------|---------|--------|-------|
| BEN   | BEN      |         |         |        |       |
|       | ICORE    | ICORE   |         |        |       |
|       |          | ISAMP   | ISAMP   |        |       |
|       |          |         | ICORE   |        |       |
|       | ICORE    |         |         | ICORE  |       |
|       |          |         |         | ISAMP  | ISAMP |

# **CPR Phytoplankton Data**

| EVENT | CPR_COLOUR | CPR_PHYTO |
|-------|------------|-----------|
| BEN   | BEN        | BEN       |

# **CPR Zooplankton Data**

| EVENT | CPR_ZOO |
|-------|---------|
| BEN   | BEN     |

# **Primary Index**

| CRSINDX | EVENT  | EVENT_COMM | G_CODE |
|---------|--------|------------|--------|
|         | BEN    | BEN        |        |
|         | GCODE  |            | GCODE  |
| CRUISE  | CRUISE |            |        |

# **Longhurst-Hardy Plankton Recorder and RMT Data**

| EVENT | NETINDX | RMT  | LHPR |
|-------|---------|------|------|
| BEN   | BEN     |      |      |
|       | INET    | INET | INET |

## **Marine Snow Camera**

| EVENT | MSP |
|-------|-----|
| BEN   | BEN |

## **Trace Metal Uptake Kinetics**

| EVENT | BOTTLE | MTALHDR | MTALDAT |
|-------|--------|---------|---------|
| BEN   | BEN    |         |         |
|       | IBTTLE | IBTTLE  |         |
|       |        | EXPREF  | EXPREF  |

# <sup>15</sup>N Production Data

| EVENT | BOTTLE | N15DAT | N15HDR |
|-------|--------|--------|--------|
| BEN   | BEN    |        |        |
|       | IBTTLE | IBTTLE |        |
|       |        | EXPREF | EXPREF |
| BEN   |        |        | BENCOL |

## **Phosphorus Uptake Data**

| EVENT | BOTTLE | P33DAT | P33DARK | P33HDR |
|-------|--------|--------|---------|--------|
| BEN   | BEN    |        |         |        |
|       | IBTTLE | IBTTLE | IBTTLE  |        |
|       |        | EXPREF | EXPREF  | EXPREF |
| BEN   |        |        |         | BENCOL |

## **Irradiance Profiles**

| EVENT | PRINDX | PRPROF |
|-------|--------|--------|
| BEN   | BEN    |        |
|       | IPROF  | IPROF  |

# **Sediment Trap Data (Fully Normalised Structure)**

| EVENT | STINDX | TRAPDATA | ZUSG   | ORGCODE |
|-------|--------|----------|--------|---------|
| BEN   | BEN    |          |        |         |
|       | ISAMP  | ISAMP    |        |         |
|       |        | IORGRF   |        | IORGRF  |
|       |        | CPCODE   | CPMUSG |         |

## **XBT Data**

| EVENT | XBTINDX | XBT |
|-------|---------|-----|
| BEN   | BEN     | BEN |

# **Parameter Dictionary**

| ZUCT   | ZUPM   | ZUNT   | ZUSG   |
|--------|--------|--------|--------|
| CCTREF | CPMCAT |        |        |
|        | CPMUNT | CPMUNT |        |
|        | CPMREF |        | CPMREF |